
10.2 Parabolic Interpolation and Brent’s Method 395

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 77: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43064-X
)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity P

ress.
P
rogram

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes S

oftw
are. 

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server
com

puter, is strictly prohibited. T
o order N

um
erical R

ecipes books,
diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth A
m

erica only),
or send em
ail to trade@

cup.cam
.ac.uk (outside N

orth A
m

erica).

x3=cx
if(abs(cx-bx).gt.abs(bx-ax))then Make x0 to x1 the smaller segment,

x1=bx
x2=bx+C*(cx-bx) and fill in the new point to be tried.

else
x2=bx
x1=bx-C*(bx-ax)

endif
f1=f(x1) The initial function evaluations. Note that we never need to

evaluate the function at the original endpoints.f2=f(x2)
1 if(abs(x3-x0).gt.tol*(abs(x1)+abs(x2)))then Do-while loop: we keep returning here.

if(f2.lt.f1)then One possible outcome,
x0=x1 its housekeeping,
x1=x2
x2=R*x1+C*x3
f1=f2
f2=f(x2) and a new function evaluation.

else The other outcome,
x3=x2
x2=x1
x1=R*x2+C*x0
f2=f1
f1=f(x1) and its new function evaluation.

endif
goto 1 Back to see if we are done.
endif
if(f1.lt.f2)then We are done. Output the best of the two current values.

golden=f1
xmin=x1

else
golden=f2
xmin=x2

endif
return
END

10.2 Parabolic Interpolation and Brent’s
Method in One Dimension

We already tipped our hand about the desirability of parabolic interpolation in
the previous section’s mnbrak routine, but it is now time to be more explicit. A
golden section search is designed to handle, in effect, the worst possible case of
function minimization, with the uncooperative minimum hunted down and cornered
like a scared rabbit. But why assume the worst? If the function is nicely parabolic
near to the minimum — surely the generic case for sufficiently smooth functions —
then the parabola fitted through any three points ought to take us in a single leap
to the minimum, or at least very near to it (see Figure 10.2.1). Since we want to
find an abscissa rather than an ordinate, the procedure is technically called inverse
parabolic interpolation.

The formula for the abscissa x that is the minimum of a parabola through three
points f(a), f(b), and f(c) is

x = b− 1

2

(b − a)2[f(b) − f(c)] − (b − c)2[f(b)− f(a)]

(b− a)[f(b) − f(c)] − (b − c)[f(b) − f(a)]
(10.2.1)
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Figure 10.2.1. Convergence to a minimum by inverse parabolic interpolation. A parabola (dashed line) is
drawn through the three original points 1,2,3 on the given function (solid line). The function is evaluated
at the parabola’s minimum, 4, which replaces point 3. A new parabola (dotted line) is drawn through
points 1,4,2. The minimum of this parabola is at 5, which is close to the minimum of the function.

as you can easily derive. This formula fails only if the three points are collinear,
in which case the denominator is zero (minimum of the parabola is infinitely far
away). Note, however, that (10.2.1) is as happy jumping to a parabolic maximum
as to a minimum. No minimization scheme that depends solely on (10.2.1) is likely
to succeed in practice.

The exacting task is to invent a scheme that relies on a sure-but-slow technique,
like golden section search, when the function is not cooperative, but that switches
over to (10.2.1) when the function allows. The task is nontrivial for several
reasons, including these: (i) The housekeeping needed to avoid unnecessary function
evaluations in switching between the two methods can be complicated. (ii) Careful
attention must be given to the “endgame,” where the function is being evaluated
very near to the roundoff limit of equation (10.1.2). (iii) The scheme for detecting a
cooperative versus noncooperative function must be very robust.

Brent’s method [1] is up to the task in all particulars. At any particular stage,
it is keeping track of six function points (not necessarily all distinct), a, b, u, v,
w and x, defined as follows: the minimum is bracketed between a and b; x is the
point with the very least function value found so far (or the most recent one in
case of a tie); w is the point with the second least function value; v is the previous
value of w; u is the point at which the function was evaluated most recently. Also
appearing in the algorithm is the point xm, the midpoint between a and b; however,
the function is not evaluated there.

You can read the code below to understand the method’s logical organization.
Mention of a few general principles here may, however, be helpful: Parabolic
interpolation is attempted, fitting through the points x, v, and w. To be acceptable,
the parabolic step must (i) fall within the bounding interval (a, b), and (ii) imply a
movement from the best current value x that is less than half the movement of the
step before last. This second criterion insures that the parabolic steps are actually
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converging to something, rather than, say, bouncing around in some nonconvergent
limit cycle. In the worst possible case, where the parabolic steps are acceptable but
useless, the method will approximately alternate between parabolic steps and golden
sections, converging in due course by virtue of the latter. The reason for comparing
to the step before last seems essentially heuristic: Experience shows that it is better
not to “punish” the algorithm for a single bad step if it can make it up on the next one.

Another principle exemplified in the code is never to evaluate the function less
than a distance tol from a point already evaluated (or from a known bracketing
point). The reason is that, as we saw in equation (10.1.2), there is simply no
information content in doing so: the function will differ from the value already
evaluated only by an amount of order the roundoff error. Therefore in the code below
you will find several tests and modifications of a potential new point, imposing this
restriction. This restriction also interacts subtly with the test for “doneness,” which
the method takes into account.

A typical ending configuration for Brent’s method is that a and b are 2×x×tol
apart, with x (the best abscissa) at the midpoint of a and b, and therefore fractionally
accurate to ±tol.

Indulge us a final reminder that tol should generally be no smaller than the
square root of your machine’s floating-point precision.

FUNCTION brent(ax,bx,cx,f,tol,xmin)
INTEGER ITMAX
REAL brent,ax,bx,cx,tol,xmin,f,CGOLD,ZEPS
EXTERNAL f
PARAMETER (ITMAX=100,CGOLD=.3819660,ZEPS=1.0e-10)

Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
between ax and cx, and f(bx) is less than both f(ax) and f(cx)), this routine isolates
the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
the minimum is returned as xmin, and the minimum function value is returned as brent,
the returned function value.
Parameters: Maximum allowed number of iterations; golden ratio; and a small number that
protects against trying to achieve fractional accuracy for a minimum that happens to be
exactly zero.

INTEGER iter
REAL a,b,d,e,etemp,fu,fv,fw,fx,p,q,r,tol1,tol2,u,v,w,x,xm
a=min(ax,cx) a and b must be in ascending order, though the input

abscissas need not be.b=max(ax,cx)
v=bx Initializations...
w=v
x=v
e=0. This will be the distance moved on the step before last.
fx=f(x)
fv=fx
fw=fx
do 11 iter=1,ITMAX Main program loop.

xm=0.5*(a+b)
tol1=tol*abs(x)+ZEPS
tol2=2.*tol1
if(abs(x-xm).le.(tol2-.5*(b-a))) goto 3 Test for done here.
if(abs(e).gt.tol1) then Construct a trial parabolic fit.

r=(x-w)*(fx-fv)
q=(x-v)*(fx-fw)
p=(x-v)*q-(x-w)*r
q=2.*(q-r)
if(q.gt.0.) p=-p
q=abs(q)
etemp=e
e=d
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if(abs(p).ge.abs(.5*q*etemp).or.p.le.q*(a-x).or.
* p.ge.q*(b-x)) goto 1

The above conditions determine the acceptability of the parabolic fit. Here it is o.k.:
d=p/q Take the parabolic step.
u=x+d
if(u-a.lt.tol2 .or. b-u.lt.tol2) d=sign(tol1,xm-x)
goto 2 Skip over the golden section step.

endif
1 if(x.ge.xm) then We arrive here for a golden section step, which we take

into the larger of the two segments.e=a-x
else

e=b-x
endif
d=CGOLD*e Take the golden section step.

2 if(abs(d).ge.tol1) then Arrive here with d computed either from parabolic fit, or
else from golden section.u=x+d

else
u=x+sign(tol1,d)

endif
fu=f(u) This is the one function evaluation per iteration,
if(fu.le.fx) then and now we have to decide what to do with our function

evaluation. Housekeeping follows:if(u.ge.x) then
a=x

else
b=x

endif
v=w
fv=fw
w=x
fw=fx
x=u
fx=fu

else
if(u.lt.x) then

a=u
else

b=u
endif
if(fu.le.fw .or. w.eq.x) then

v=w
fv=fw
w=u
fw=fu

else if(fu.le.fv .or. v.eq.x .or. v.eq.w) then
v=u
fv=fu

endif
endif Done with housekeeping. Back for another iteration.

enddo 11

pause ’brent exceed maximum iterations’
3 xmin=x Arrive here ready to exit with best values.

brent=fx
return
END

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), Chapter 5. [1]

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §8.2.
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10.3 One-Dimensional Search with First
Derivatives

Here we want to accomplish precisely the same goal as in the previous
section, namely to isolate a functional minimum that is bracketed by the triplet of
abscissas (a, b, c), but utilizing an additional capability to compute the function’s
first derivative as well as its value.

In principle, we might simply search for a zero of the derivative, ignoring the
function value information, using a root finder like rtflsp or zbrent (§§9.2–9.3).
It doesn’t take long to reject that idea: How do we distinguish maxima from minima?
Where do we go from initial conditions where the derivatives on one or both of
the outer bracketing points indicate that “downhill” is in the direction out of the
bracketed interval?

We don’t want to give up our strategy of maintaining a rigorous bracket on the
minimum at all times. The only way to keep such a bracket is to update it using
function (not derivative) information, with the central point in the bracketing triplet
always that with the lowest function value. Therefore the role of the derivatives can
only be to help us choose new trial points within the bracket.

One school of thought is to “use everything you’ve got”: Compute a polynomial
of relatively high order (cubic or above) that agrees with some number of previous
function and derivative evaluations. For example, there is a unique cubic that agrees
with function and derivative at two points, and one can jump to the interpolated
minimum of that cubic (if there is a minimum within the bracket). Suggested by
Davidon and others, formulas for this tactic are given in [1].

We like to be more conservative than this. Once superlinear convergence sets
in, it hardly matters whether its order is moderately lower or higher. In practical
problems that we have met, most function evaluations are spent in getting globally
close enough to the minimum for superlinear convergence to commence. So we are
more worried about all the funny “stiff” things that high-order polynomials can do
(cf. Figure 3.0.1b), and about their sensitivities to roundoff error.

This leads us to use derivative information only as follows: The sign of the
derivative at the central point of the bracketing triplet (a, b, c) indicates uniquely
whether the next test point should be taken in the interval (a, b) or in the interval
(b, c). The value of this derivative and of the derivative at the second-best-so-far
point are extrapolated to zero by the secant method (inverse linear interpolation),
which by itself is superlinear of order 1.618. (The golden mean again: see [1], p. 57.)
We impose the same sort of restrictions on this new trial point as in Brent’s method.
If the trial point must be rejected, we bisect the interval under scrutiny.

Yes, we are fuddy-duddies when it comes to making flamboyant use of derivative
information in one-dimensional minimization. But we have met too many functions
whose computed “derivatives” don’t integrate up to the function value and don’t
accurately point the way to the minimum, usually because of roundoff errors,
sometimes because of truncation error in the method of derivative evaluation.

You will see that the following routine is closely modeled on brent in the
previous section.


