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13.10 Wavelet Transforms

Likethefast Fourier transform (FFT), the discrete wavel et transform (DWT) is
afast, linear operation that operates on adatavector whose lengthisan integer power
of two, transforming it into a numerically different vector of the same length. Also
likethe FFT, thewavel et transformisinvertibleand in fact orthogonal — theinverse
transform, when viewed as a big matrix, is simply the transpose of the transform.
Both FFT and DWT, therefore, can be viewed as a rotation in function space, from
the input space (or time) domain, where the basis functions are the unit vectors e;,
or Dirac delta functions in the continuum limit, to a different domain. For the FFT,
this new domain has basis functions that are the familiar sines and cosines. In the
wavelet domain, the basis functions are somewhat more complicated and have the
fanciful names “mother functions’ and “wavelets.”

Of coursethere are an infinity of possible bases for function space, amost all of
them uninteresting! What makesthewavel et basisinterestingisthat, unlike sinesand
cosines, individual wavelet functions are quite localized in space; simultaneously,
like sines and cosines, individual wavelet functions are quite localized in frequency
or (more precisaly) characteristic scale. As we will see below, the particular kind
of dual localization achieved by wavelets renders large classes of functions and
operatorssparse, or sparse to some high accuracy, when transformed into the wavel et
domain. Anaogously with the Fourier domain, where a class of computations, like
convolutions, become computationaly fast, there is a large class of computations
— those that can take advantage of sparsity — that become computationally fast
in the wavelet domain(1].

Unlike sines and cosines, which define a unique Fourier transform, there is
not one single unique set of wavelets; in fact, there are infinitely many possible
sets.  Roughly, the different sets of wavelets make different trade-offs between
how compactly they are localized in space and how smooth they are. (There are
further fine distinctions.)

Daubechies Wavelet Filter Coefficients

A particular set of wavelets is specified by a particular set of numbers, called
wavelet filter coefficients. Here, we will largely restrict ourselves to wavelet filters
in a class discovered by Daubechies[2]. This class includes members ranging from
highly localized to highly smooth. The simplest (and most localized) member, often
called DAUBA4, has only four coefficients, cg, . . ., c3. For the moment we specialize
to this case for ease of notation.
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13.10 Wavelet Transforms 585

Consider the following transformation matrix acting on a column vector of
data to its right:

[co c1 c2 c3
c3 —C2 C1 —Cp
Co C1 C2 C3
c3 —C2 C1 —Co
(13.10.1)

¢ €1 C2 (3
€3 —C2 €1 —Co
C2 (3 o
LC1 —Cp c3 —C2J

Hereblank entries signify zeroes. Notethestructureof thismatrix. Thefirst row
generates one component of the data convolved with thefilter coefficientscg . . ., cs.
Likewise the third, fifth, and other odd rows. If the even rows followed this pattern,
offset by one, then the matrix would be a circulant, that is, an ordinary convolution
that could be done by FFT methods. (Note how the last two rows wrap around
like convolutions with periodic boundary conditions.) Instead of convolving with
co, - - -, C3, hOWever, the even rows perform adifferent convolution, with coefficients
c3, —Ca,C1, —Co. The action of the matrix, overdl, is thus to perform two related
convolutions, then to decimate each of them by half (throw away half the values),
and interleave the remaining halves.

Itis useful to think of thefilter ¢y, . . ., c3 as being a smoothing filter, call it H,
something like a moving average of four points. Then, because of the minus signs,
the filter c3, —ca, c1, —co, call it G, isnot a smoothing filter. (In signal processing
contexts, H and G are called quadraturemirror filters[3].) Infact, the ¢’sare chosen
S0 as to make G yidd, insofar as possible, a zero response to a sufficiently smooth
datavector. Thisisdone by requiring the sequence cs, —ca, ¢1, —co to have acertain
number of vanishing moments. When thisis the case for p moments (starting with
the zeroth), a set of wavelets is said to satisfy an “approximation condition of order
p.” Thisresultsin the output of H, decimated by half, accurately representing the
data's “smooth” information. The output of G, also decimated, is referred to as
the data's “detail” information[4].

For such a characterization to be useful, it must be possible to reconstruct the
original data vector of length V from its V/2 smooth or s-components and its V/2
detail or d-components. That is effected by requiring the matrix (13.10.1) to be
orthogonal, so that its inverse is just the transposed matrix

Co C3 ce C2 C1
ci —C2 cee Cc3 —Cp
Co C1 Co C3

€3 —C €1 —C2

(13.10.2)

C2 C1 Co €3
C3 —Cyp €1 —Co
C2 (1 Co C3
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586 Chapter 13.  Fourier and Spectral Applications

One seesimmediately that matrix (13.10.2) isinverseto matrix (13.10.1) if and
only if these two equations hold,

cgteitcstes=1
(13.10.3)
CoCo + C3C1 = 0

If additionally we require the approximation condition of order p = 2, then two
additional relations are required,

c3—co+ci—cg=0

(13.10.4)
Ocg —1leo+2¢1 — 3¢ =0

Equations (13.10.3) and (13.10.4) are 4 equations for the 4 unknowns c, . . ., cs3,
first recognized and solved by Daubechies. The unique solution (up to a left-right
reversa) is

co=1+V3)/4V2 ¢ =3+V3)/4V2

=3 -V3)/4W2 3 =(1-3)/42 (13.10.5)

In fact, DAUB4 is only the most compact of a sequence of wavelet sets: If we
had six coefficients instead of four, there would be three orthogonality requirements
in equation (13.10.3) (with offsets of zero, two, and four), and we could require
the vanishing of p = 3 moments in equation (13.10.4). In this case, DAUBSG, the
solution coefficients can aso be expressed in closed form,

co = (1+v10 4+ V/5 4 21/10)/16v2 c1 = (5+ V104 3v5 + 24/10) /1612
ez = (10 — 2v/10 + 2v/5 + 2/10)/16v/2 ¢35 = (10 — 2¢/10 — 2v/5 + 21/10)/161/2
cs = (5410 — 3v/5 +2v10)/16v/2  ¢5 = (1 + /10 — /5 + 2¢/10)/16v2

(13.10.6)
For higher p, upto 10, Daubechies 2] has tabul ated the coefficients numerically. The
number of coefficients increases by two each timep isincreased by one.

Discrete Wavelet Transform

We have not yet defined the discrete wavelet transform (DWT), but we are
amost there: The DWT consists of applying a wavelet coefficient matrix like
(13.10.2) hierarchically, first to thefull datavector of length NV, then to the “ smooth”
vector of length N/2, then to the “smooth-smooth” vector of length N/4, and
so on until only a trivial number of “smooth-. . .-smooth” components (usualy 2)
remain. The procedure is sometimes called a pyramidal algorithm(4], for obvious
reasons. The output of the DWT consists of these remaining components and all
the “detail” components that were accumulated aong the way. A diagram should
make the procedure clear:
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13.10 Wavelet Transforms 587

My rs1 rs1 rSi rSi S
Y2 dy s2 Dy So | e | S2
Y3 52 S3 So S3 = | D
Ya da S4 Do Sy Do
s 53 s5 13&.1 S pe%te Dy oh
Y6 ds 56 Ds Do Do
yr Csl4 S7 S4 ga ga
ys 4 S8 Dy 4 4
Yo 13&.1 s5 per_rm}te a v a v
Y10 ds do do do do
Y11 6 ds ds ds ds
Y12 de dy dy dy dy
Y13 S7 ds ds ds ds
Y14 d7 ds ds dg dg
Y15 S8 dr dr dr dr

L y16 - L dg L ds L dg 4 L ds L dg

(13.10.7)

If the length of the data vector were a higher power of two, there would be
more stages of applying (13.10.1) (or any other wavel et coefficients) and permuting.
The endpoint will aways be a vector with two S’s and a hierarchy of D's, D’s,
d's, etc. Notice that once d’s are generated, they simply propagate through to al
subsequent stages.

A value d; of any level is termed a “wavelet coefficient” of the origina data
vector; thefinal valuesS; , So should strictly be called “ mother-function coefficients,”
athough the term “wavelet coefficients’ is often used loosdly for both d’s and final
S’s. Since the full procedure is a composition of orthogonal linear operations, the
whole DWT is itself an orthogonal linear operator.

Toinvertthe DWT, onesimply reversesthe procedure, starting with the smallest
level of the hierarchy and working (in equation 13.10.7) from right to left. The
inverse matrix (13.10.2) is of course used instead of the matrix (13.10.1).

Asaready noted, thematrices (13.10.1) and (13.10.2) embody periodic (“wrap-
around”) boundary conditions on the data vector. One normally accepts this as a
minor inconvenience: the last few wavelet coefficients at each level of the hierarchy
are affected by data from both ends of the data vector. By circularly shifting the
matrix (13.10.1) N/2 columns to the left, one can symmetrize the wrap-around;
but this does not eliminate it. It isin fact possible to eliminate the wrap-around
completely by altering the coefficients in the first and last N rows of (13.10.1),
giving an orthogonal matrix that is purely band-diagonal [5]. This variant, beyond
our scope here, is useful when, eg., the data varies by many orders of magnitude
from one end of the data vector to the other.

Here is a routine, wt1, that performs the pyramidal agorithm (or its inverse
if isign is negative) on some data vector a(1:n). Successive applications of the
wavelet filter, and accompanying permutations, are done by an assumed routine
wtstep, which must be provided. (We give examples of severa different wtstep
routines just below.)

SUBROUTINE wtl(a,n,isign,wtstep)
INTEGER isign,n

REAL a(n)

EXTERNAL wtstep

C USES wstep

One-dimensional discrete wavelet transform. This routine implements the pyramid algo-
rithm, replacing a(1:n) by its wavelet transform (for isign=1), or performing the inverse
operation (for isign=-1). Note that n MUST be an integer power of 2. The subroutine
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588 Chapter 13.  Fourier and Spectral Applications

wtstep, whose actual name must be supplied in calling this routine, is the underlying
wavelet filter. Examples of wtstep are daub4 and (preceded by pwtset) pwt.

INTEGER nn

if (n.1t.4) return

if (isign.ge.0) then Wavelet transform.
nn=n Start at largest hierarchy,
if (nn.ge.4) then
call wtstep(a,nn,isign) and work towards smallest.
nn=nn/2
goto 1
endif
else Inverse wavelet transform.
nn=4 Start at smallest hierarchy,

if (nn.le.n) then
call wtstep(a,nn,isign)
nn=nnx2 and work towards largest.
goto 2
endif
endif
return
END

Here, as a specific instance of wtstep, isaroutinefor the DAUB4 wavelets:

SUBROUTINE daub4(a,n,isign)
INTEGER n,isign,NMAX NMAX is the maximum allowed value of n.
REAL a(n),C3,C2,C1,CO
PARAMETER (C0=0.4829629131445341,C1=0.8365163037378079,
C2=0.2241438680420134,C3=-0.1294095225512604 ,NMAX=1024)
Applies the Daubechies 4-coefficient wavelet filter to data vector a(1:n) (for isign=1) or
applies its transpose (for isign=-1). Used hierarchically by routines wt1 and wtn.
REAL wksp (NMAX)
INTEGER nh,nhi,i, j
if(n.1lt.4)return
if (n.gt.NMAX) pause ’wksp too small in daub4’
nh=n/2
nhi=nh+1
if (isign.ge.0) then Apply filter.
i=1
dou j=1,n-3,2
wksp (1)=CO*a(j)+Clxa(j+1)+C2*a(j+2)+C3*a(j+3)
wksp (i+nh)=C3*a(j)-C2*a(j+1)+Cl*a(j+2)-CO*a(j+3)
i=i+1
enddo 11
wksp(i)=CO*a(n-1)+Cl*a(n)+C2*a(1)+C3*a(2)
wksp (i+nh)=C3*a(n-1)-C2*a(n)+C1l*a(1)-CO*a(2)
else Apply transpose filter.
wksp(1)=C2*a(nh)+Cl*a(n)+CO*a(1)+C3*a(nhl)
wksp(2)=C3*a(nh)-CO*a(n)+C1i*a(1)-C2*a(nhl)
j=3
do 12 i=1,nh-1
wksp(j)=C2*a(i)+C1lxa(i+nh)+CO*a(i+1)+C3*a(i+nhl)
wksp (j+1)=C3*a(i)-CO*a(i+nh)+Cl*a(i+1)-C2*a(i+nhl)
j=j+2
enddo 12
endif
do 13 i=1,n
a(i)=wksp(i)
enddo 13
return
END
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13.10 Wavelet Transforms 589

For larger sets of wavelet coefficients, the wrap-around of the last rows or
columns is a programming inconvenience. An efficient implementation would
handle the wrap-arounds as special cases, outside of the main loop. Here, we will
content ourselves with a more general scheme involving some extra arithmetic at
run time. The following routine sets up any particular wavelet coefficients whose
values you happen to know.

SUBROUTINE pwtset(n)
INTEGER n,NCMAX,ncof ,ioff,joff
PARAMETER (NCMAX=50) Maximum number of wavelet coefficients passed to pwt.
REAL cc(NCMAX),cr (NCMAX)
COMMON /pwtcom/ cc,cr,ncof,ioff, joff
Initializing routine for pwt, here implementing the Daubechies wavelet filters with 4, 12,
and 20 coefficients, as selected by the input value n. Further wavelet filters can be included
in the obvious manner. This routine must be called (once) before the first use of pwt. (For
the case n=4, the specific routine daub4 is considerably faster than pwt.)
INTEGER k
REAL sig,c4(4),c12(12),c20(20)
SAVE c4,c12,c20,/pwtcom/
DATA c4/0.4829629131445341, 0.8365163037378079,
0.2241438680420134,-0.1294095225512604/
DATA c12 /.111540743350, .494623890398, .751133908021,
.315250351709,-.226264693965,-.129766867567,
.097501605587, .027522865530,-.031582039318,
.000553842201, .004777257511,-.001077301085/
DATA c20 /.026670057901, .188176800078, .527201188932,
.688459039454, .281172343661,-.249846424327,
-.195946274377, .127369340336, .093057364604,
-.071394147166,-.029457536822, .033212674059,
.003606553567,-.010733175483, .001395351747,
.001992405295,-.000685856695,-.000116466855,
.000093588670,-.000013264203 /
ncof=n
sig=-1.
dou k=1,n
if(n.eq.4)then
cc(k)=c4 (k)
else if(n.eq.12)then
cc(k)=c12(k)
else if(n.eq.20)then
cc(k)=c20(k)

else
pause ’unimplemented value n in pwtset’

endif

cr(ncof+1-k)=sig*cc (k)

sig=-sig
enddo 11
ioff=-n/2 These values center the “support” of the wavelets at each level.
joff=-n/2 Alternatively, the “peaks” of the wavelets can be approx-
return imately centered by the choices ioff=-2 and joff=-n+2.
END Note that daub4 and pwtset with n=4 use different default

centerings.

Once pwtset has been caled, the following routine can be used as a specific
instance of wtstep.

SUBROUTINE pwt(a,n,isign)

INTEGER isign,n,NMAX,NCMAX,ncof ,ioff,joff
PARAMETER (NMAX=2048,NCMAX=50)

REAL a(n),wksp(NMAX) ,cc(NCMAX) ,cr(NCMAX)
COMMON /pwtcom/ cc,cr,ncof,ioff, joff
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590 Chapter 13.  Fourier and Spectral Applications

Partial wavelet transform: applies an arbitrary wavelet filter to data vector a(1:n) (for
isign=1) or applies its transpose (for isign=-1). Used hierarchically by routines wt1l
and wtn. The actual filter is determined by a preceding (and required) call to pwtset,
which initializes the common block pwtcom.

INTEGER i,ii,j,jf,jr,k,nl,ni,nj,nh,nmod

REAL ai,ail

SAVE /pwtcom/

if (n.1t.4) return

nmod=ncof*n A positive constant equal to zero mod n.
ni=n-1 Mask of all bits, since n a power of 2.
nh=n/2
dou j=1,n

wksp(j)=0.
enddo 11
if (isign.ge.0) then Apply filter.

ii=1

do 13 i=1,n,2

ni=i+nmod+ioff Pointer to be incremented and wrapped-around.

nj=i+nmod+joff
do 12 k=1,ncof
jf=iand(nl,ni+k) We use bitwise and to wrap-around the pointers.
jr=iand(nl,nj+k)
wksp(ii)=wksp(ii)+cc(k)*a(jf+1)
wksp (ii+nh)=wksp(ii+nh)+cr(k)*a(jr+1)
enddo 12
ii=ii+1
enddo 13
else Apply transpose filter.
ii=1
dois i=1,n,2
ai=a(ii)
ail=a(ii+nh)
ni=i+nmod+ioff See comments above.
nj=i+nmod+joff
do 14 k=1,ncof
jf=iand(nl,ni+k)+1
jr=iand(nl,nj+k)+1
wksp (j£)=uksp (jf)+cc(k)*ai
wksp (jr)=wksp(jr)+cr(k)*ail
enddo 14
ii=ii+l
enddo 15
endif
do1s j=1,n Copy the results back from workspace.
a(j)=wksp(j)
enddo 16
return
END

What Do Wavelets Look Like?

We are now in a position actually to see some wavelets. To do so, we simply
run unit vectors through any of the above discrete wavelet transforms, with isign
negative so that the inverse transform is performed. Figure 13.10.1 shows the
DAUB4 wavelet that istheinverse DWT of aunit vector in the 5th component of a
vector of length 1024, and also the DAUB20 wavel et that is the inverse of the 22nd
component. (One needs to go to a later hierarchical level for DAUB20, to avoid a
wavelet with a wrapped-around tail.) Other unit vectors would give wavelets with
the same shapes, but different positions and scales.
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13.10 Wavelet Transforms 591
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Figure 13.10.1. Wavelet functions, that is, single basis functions from the wavelet families DAUB4
and DAUB20. A complete, orthonormal wavelet basis consists of scalings and translations of either one
of these functions. DAUB4 has an infinite number of cusps; DAUB20 would show similar behavior
in a higher derivative.

One sees that both DAUB4 and DAUB20 have wavelets that are continuous.
DAUB20 wavel ets al so have higher continuousderivatives. DAUB4 hasthe peculiar
property that its derivative exists only almost everywhere. Examples of where it
failsto exist arethe pointsp/2™, where p and n are integers; a such points, DAUB4
is left differentiable, but not right differentiable! This kind of discontinuity — at
least in some derivative— is anecessary feature of wavelets with compact support,
like the Daubechies series. For every increase in the number of wavelet coefficients
by two, the Daubechies wavel ets gain about half a derivative of continuity. (But not
exactly haf; the actua orders of regularity are irrational numbers!)

Note that the fact that wavelets are not smooth does not prevent their having
exact representationsfor some smooth functions, asdemanded by their approximation
order p. The continuity of a wavelet is not the same as the continuity of functions
that a set of wavelets can represent. For example, DAUBA4 can represent (piecewise)
linear functions of arbitrary slope: in the correct linear combinations, the cusps al
cancel out. Every increase of two in the number of coefficients allows one higher
order of polynomial to be exactly represented.

Figure 13.10.2 shows the result of performing the inverse DWT on the input
vector e;o + €55, again for the two different particular wavelets. Since 10 lies early
in the hierarchical range of 9 — 16, that wavelet lies on the left side of the picture.
Since58liesinalater (smaller-scale) hierarchy, it isanarrower wavelet; inthe range
of 33—64 it is towards the end, so it lies on the right side of the picture. Note that
smaller-scale wavelets are taller, so as to have the same squared integral.
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-2  DAUB4ep+esp ]
i R BRI AN RN PRI NPT SRR R B

0 100 200 300 400 500 600 700 800 900 1000

-2 F Lemarie e;g + esg .

0 100 200 300 400 500 600 700 800 900 1000

Figure 13.10.2. More wavelets, here generated from the sum of two unit vectors, e;g + €5g, which
are in different hierarchical levels of scale, and also at different spatial positions. DAUB4 wavelets (a)
are defined by afilter in coordinate space (equation 13.10.5), while Lemarie wavelets (b) are defined by
a filter most easily written in Fourier space (equation 13.10.14).

Wavelet Filters in the Fourier Domain

The Fourier transform of a set of filter coefficients c; is given by

H(w) = Z c;jetie (13.10.8)

Here H is afunction periodic in 27, and it has the same meaning as before: It is
the wavelet filter, now written in the Fourier domain. A very useful fact is that the
orthogonality conditions for the ¢'s (e.g., equation 13.10.3 above) collapse to two
simple relations in the Fourier domain,

%|H(O)|2 —1 (13.10.9)
and

[|Hw)]* + [H(w+m)]*] =1 (13.10.10)

N~

Likewise the approximation condition of order p (e.g., equation 13.10.4 above)
has a simple formulation, requiring that H(w) have a pth order zero at w = ,
or (equivaently)

H™(r)=0 m=0,1,...,p—1 (13.10.11)
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13.10 Wavelet Transforms 593

Itisthusrelatively straightforward to invent wavel et setsin the Fourier domain.
You simply invent a function H(w) satisfying equations (13.10.9)—«13.10.11). To
find the actual c;’s applicable to a data (or s-component) vector of length NV, and
with periodicwrap-around asin matrices (13.10.1) and (13.10.2), you invert equation
(13.10.8) by the discrete Fourier transform

N—-1
S > H(%)e_%ijk/]v (13.10.12)
TN k=0 N

The quadrature mirror filter G (reversed c¢;'s with dternating signs), incidentaly,
has the Fourier representation

Glw) = e “H (w+n) (13.10.13)

where asterisk denotes complex conjugation.

In genera the above procedure will not produce wavelet filters with compact
support. In other words, all N of the¢;’s, j = 0,..., N — 1 will in general be
nonzero (though they may be rapidly decreasing in magnitude). The Daubechies
wavelets, or other wavel ets with compact support, are specially chosen so that H (w)
is a trigonometric polynomial with only a small number of Fourier components,
guaranteeing that there will be only a small number of nonzero ¢;’s.

On the other hand, there is sometimes no particular reason to demand compact
support. Giving it up in fact allows the ready construction of relatively smoother
wavelets (higher values of p). Even without compact support, the convolutions
implicit in the matrix (13.10.1) can be done efficiently by FFT methods.

Lemarie’'s wavelet (seel4]) has p = 4, does not have compact support, and is
defined by the choice of H(w),

4315 — 420u + 126u2 — 4u3]"/?

H(w) = |2(1—u
() (=) S5 1500 1 12607 — 408

(13.10.14)

where

u = sin? % v =sin?w (13.10.15)

It is beyond our scope to explain where equation (13.10.14) comes from. An
informal description isthat the quadrature mirror filter G(w) deriving from equation
(13.10.14) hasthe property that it givesidentically zero when applied to any function
whose odd-numbered samples are equal to the cubic spline interpolation of its
even-numbered samples. Since this class of functions includes many very smooth
members, it followsthat H (w) does agood job of truly selecting afunction’s smooth
information content. Sample Lemarie wavelets are shown in Figure 13.10.2.
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594 Chapter 13.  Fourier and Spectral Applications

wavelet amplitude

| NI | AT | I | R | T B B
100 200 300 400 500 600 700 800 900 1000
wavelet number

Figure 13.10.3. (a) Arbitrary test function, with cusp, sampled on a vector of length 1024. (b)
Absolute value of the 1024 wavelet coefficients produced by the discrete wavelet transform of (a). Note
log scale. The dotted curve plots the same amplitudes when sorted by decreasing size. One sees that
only 130 out of 1024 coefficients are larger than 10~* (or larger than about 10~5 times the largest
coefficient, whose value is ~ 10).

Truncated Wavelet Approximations

Most of the usefulness of wavelets rests on the fact that wavelet transforms
can usefully be severely truncated, that is, turned into sparse expansions. The
case of Fourier transforms is different: FFTs are ordinarily used without truncation,
to compute fast convolutions, for example. This works because the convolution
operator is particularly simple in the Fourier basis. There are not, however, any
standard mathematical operationsthat are especialy simple in the wavelet basis.

To see how truncation works, consider the simple example shown in Figure
13.10.3. The upper pand shows an arbitrarily chosen test function, smooth except
for a square-root cusp, sampled onto a vector of length 2'°. The bottom pane
(solid curve) shows, on alog scale, the absolute value of the vector’s components
after it has been run through the DAUBA4 discrete wavelet transform. One notes,
from right to |eft, the different levels of hierarchy, 513-1024, 257-512, 129256,
etc. Within each level, thewavelet coefficients are non-negligibleonly very near the
location of the cusp, or very near the left and right boundaries of the hierarchical
range (edge effects).

The dotted curve in the lower pandl of Figure 13.10.3 plotsthe same amplitudes
as the solid curve, but sorted into decreasing order of size. One can read off, for
example, that the 130th largest wavelet coefficient has an amplitude less than 10—°
of the largest coefficient, whose magnitudeis ~ 10 (power or square integral ratio
less than 10~1%). Thus, the example function can be represented quite accurately
by only 130, rather than 1024, coefficients — the remaining ones being set to zero.
Note that thiskind of truncation makes the vector sparse, but not shorter than 1024.
It is very important that vectors in wavelet space be truncated according to the
amplitude of the components, not their position in the vector. Keeping the first 256
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13.10 Wavelet Transforms 595

components of the vector (all levels of the hierarchy except the last two) would give
an extremely poor, and jagged, approximation to the function. When you compress
a function with wavelets, you have to record both the values and the positions of
the nonzero coefficients.

Generaly, compact (and therefore unsmooth) wavelets are better for lower
accuracy approximation and for functions with discontinuities (like edges), while
smooth (and therefore noncompact) wavel ets are better for achieving high numerical
accuracy. This makes compact wavelets agood choice for image compression, for
example, whileit makes smooth wavel ets best for fast solution of integral equations.

Wavelet Transform in Multidimensions

A wavelet transform of a d-dimensional array is most easily obtained by
transforming thearray sequentially onitsfirstindex (for all valuesof itsother indices),
then on its second, and so on. Each transformation corresponds to multiplication
by an orthogonal matrix. By matrix associativity, the result is independent of the
order in which the indices were transformed. The situation is exactly like that for
multidimensional FFTs. A routinefor effecting the multidimensional DWT can thus
be modeled on a multidimensiona FFT routine like fourn:

SUBROUTINE wtn(a,nn,ndim,isign,wtstep)
INTEGER isign,ndim,nn(ndim),NMAX
REAL a(*)
EXTERNAL wtstep
PARAMETER (NMAX=1024)
USES wt st ep
Replaces a by its ndim-dimensional discrete wavelet transform, if isign is input as 1. nn
is an integer array of length ndim, containing the lengths of each dimension (number of real
values), which MUST all be powers of 2. a is a real array of length equal to the product
of these lengths, in which the data are stored as in a multidimensional real FORTRAN array.
If isign is input as —1, a is replaced by its inverse wavelet transform. The subroutine
wtstep, whose actual name must be supplied in calling this routine, is the underlying
wavelet filter. Examples of wtstep are daub4 and (preceded by pwtset) pwt.
INTEGER i1,i2,i3,idim,k,n,nnew,nprev,nt,ntot
REAL wksp (NMAX)
ntot=1
do 11 idim=1,ndim
ntot=ntot*nn(idim)
enddo 11
nprev=1
do 16 idim=1,ndim Main loop over the dimensions.
n=nn(idim)
nnew=n*nprev
if (n.gt.4) then
do1s i2=0,ntot-1,nnew
do 1 il=1,nprev
i3=i1+i2
do12 k=1,n Copy the relevant row or column or etc. into
wksp(k)=a(i3) workspace.
i3=i3+nprev
enddo 12
if (isign.ge.0) then Do one-dimensional wavelet transform.
nt=n
if (nt.ge.4) then
call wtstep(wksp,nt,isign)
nt=nt/2
goto 1
endif
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596 Chapter 13.  Fourier and Spectral Applications

else Or inverse transform.
nt=4
if (nt.le.n) then
call wtstep(wksp,nt,isign)
nt=nt*2
goto 2
endif
endif
i3=i1+i2
do13 k=1,n Copy back from workspace.
a(i3)=wksp(k)
i3=i3+nprev
enddo 13

enddo 14
enddo 15
endif
nprev=nnew
enddo 16
return
END

Here, as before, wtstep isan individual wavelet step, either daub4 or pwt.
Compression of Images

An immediate application of the multidimensional transform wtn is to image
compression. The overall procedure is to take the wavelet transform of a digitized
image, and then to “alocate bits’ among the wavelet coefficients in some highly
nonuniform, optimized, manner. In genera, large wavel et coefficients get quantized
accurately, while small coefficients are quantized coarsely with only a bit or two
— or ése are truncated completely. If the resulting quantization levels are till
statistically nonuniform, they may then be further compressed by a technique like
Huffman coding (§20.4).

Whilea more detailed description of the“back end” of this process, namely the
guantization and coding of theimage, isbeyond our scope, it is quite straightforward
to demonstrate the “front-end” wavelet encoding with a simple truncation: We keep
(withfull accuracy) all wavel et coefficientslarger than some threshold, and we delete
(set to zero) dl smaller wavelet coefficients. We can then adjust the threshold to
vary the fraction of preserved coefficients.

Figure 13.10.4 shows a sequence of images that differ in the number of wavelet
coefficients that have been kept. The origind picture (a), which is an official IEEE
test image, has 256 by 256 pixels with an 8-bit grayscale. The two reproductions
following are reconstructed with 23% (b) and 5.5% (c) of the 65536 wavelet
coefficients.  The latter image illustrates the kind of compromises made by the
truncated wavelet representation. High-contrast edges (the model’s right cheek and
hair highlights,e.g.) aremaintained at arelatively high resolution, whilelow-contrast
areas (the model’s left eye and cheek, e.g.) are washed out into what amounts to
large constant pixels. Figure 13.10.4 (d) is the result of performing the identica
procedure with Fourier, instead of wavelet, transforms. The figure is reconstructed
from the 5.5% of 65536 rea Fourier components having the largest magnitudes.
One sees that, since sines and cosines are nonlocal, the resolution is uniformly poor
acrossthe picture; also, the deletion of any components producesamottled “ringing”
everywhere. (Practical Fourier image compression schemes therefore break up an
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13.10 Wavelet Transforms 597

Figure 13.10.4. (a) |IEEE testimage, 256 x 256 pixelswith 8-bit grayscale. (b) Theimageistransformed
into the wavelet basis; 77% of its wavelet components are set to zero (those of smallest magnitude); it
is then reconstructed from the remaining 23%. (c) Same as (b), but 94.5% of the wavelet components
are deleted. (d) Same as (c), but the Fourier transform is used instead of the wavelet transform. Wavelet
coefficients are better than the Fourier coefficients at preserving relevant details.

image into small blocks of pixels, 16 x 16, say, and do rather elaborate smoothing
across block boundaries when the image is reconstructed.)

Fast Solution of Linear Systems

One of the most interesting, and promising, wavelet applications is linear
algebra. Thebasicidea[1] isto think of an integral operator (that is, alarge matrix) as
adigital image. Suppose that the operator compresses well under atwo-dimensional
wavelet transform, i.e., that a large fraction of its wavelet coefficients are so small
as to be negligible. Then any linear system involving the operator becomes a sparse
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598 Chapter 13.  Fourier and Spectral Applications

system in the wavelet basis. In other words, to solve
A-x=b (13.10.16)
we first wavelet-transform the operator A and the right-hand side b by
A=W-A-W',  b=W-b (13.10.17)

where W represents the one-dimensional wavelet transform, then solve

A-X=b (13.10.18)
and finally transform to the answer by the inverse wavelet transform
x=WT.x (13.10.19)

(Note that the routine wtn does the complete transformation of A into Z\.)

A typical integral operator that compresses well into wavel ets has arbitrary (or
even nearly singular) elements near to its main diagonal, but becomes smooth away
from the diagonal. An example might be

(1 ifi=;
Aij - { |i — j|_1/2 otherwise (13.10.20)

Figure 13.10.5 showsagraphical representation of thewavelet transform of this
meatrix, where ¢ and j range over 1...256, using the DAUB12 wavelets. Elements
larger in magnitude than 103 times the maximum element are shown as black
pixels, while e ements between 10~3 and 10~% are shown in gray. White pixelsare
< 1075, Theindicesi and j each number from the lower |€ft.

In the figure, one sees the hierarchical decomposition into power-of-two sized
blocks. At the edges or corners of the various blocks, one sees edge effects caused
by the wrap-around wavelet boundary conditions. Apart from edge effects, within
each block, the nonnegligible e ements are concentrated along the block diagonals.
Thisisa statement that, for thistype of linear operator, awavelet is coupled mainly
to near neighborsin its own hierarchy (sguare blocks aong the main diagonal) and
near neighborsin other hierarchies (rectangular blocks off the diagonal).

The number of nonnegligible elements in a matrix like that in Figure 13.10.5
scales only as N, the linear size of the matrix; as a rough rule of thumb it is about
10N log;(1/¢€), where ¢ is the truncation level, e.g., 107¢. For a 2000 by 2000
meatrix, then, the matrix is sparse by a factor on the order of 30.

Various numerical schemes can be used to solve sparse linear systems of this
“hierarchically band diagonal” form. Beylkin, Coifman, and Rokhlin[1] make
the interesting observations that (1) the product of two such matrices is itself
hierarchically band diagona (truncating, of course, newly generated elements that
are smaller than the predetermined threshold ¢); and moreover that (2) the product
can be formed in order N operations.

Fast matrix multiplication makes it possible to find the matrix inverse by
Schultz's (or Hotelling’s) method, see §2.5.
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13.10 Wavelet Transforms 599

Figure 13.10.5. Wavelet transform of a256 x 256 matrix, represented graphically. The original matrix
has a discontinuous cusp along its diagonal, decaying smoothly away on both sides of the diagonal. In
wavelet basis, the matrix becomessparse: Componentslarger than 10~2 are shown as black, components
larger than 106 as gray, and smaller-magnitude components are white. The matrix indices and j
number from the lower left.

Other schemes are a so possiblefor fast solution of hierarchically band diagonal
forms. For example, one can use the conjugate gradient method, implemented in
§2.7 as linbcg.
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600 Chapter 13.  Fourier and Spectral Applications

13.11 Numerical Use of the Sampling Theorem

In §6.10 we implemented an approximating formula for Dawson’s integral due to
Rybicki. Now that we have become Fourier sophisticates, we can learn that the formula
derives from numerical application of the sampling theorem (§12.1), normally considered to
be a purely analytic tool. Our discussion is identical to Rybicki [1].

For present purposes, the sampling theorem is most conveniently stated as follows:
Consider an arbitrary function g(¢) and the grid of sampling points ¢, = « + nh, where n
ranges over the integers and « is a constant that allows an arbitrary shift of the sampling
grid. We then write

oo

gy=Y g(tn)sinc%(t—tn)—ke(t) (13.11.1)

n=-—oo

where sincz = sinz/z. The summation over the sampling points is called the sampling
representation of g(¢), and e(t) is its error term. The sampling theorem asserts that the
sampling representation is exact, that is, e(t) = 0, if the Fourier transform of g(t),

G(w) = / g(t)e™" dt (13.11.2)
vanishes identically for |w| > = /h.

When can sampling representations be used to advantage for the approximate numerical
computation of functions? In order that the error term be small, the Fourier transform G(w)
must be sufficiently small for |w| > 7/h. On the other hand, in order for the summation
in (13.11.1) to be approximated by a reasonably small number of terms, the function g(t)
itself should be very small outside of a fairly limited range of values of ¢t. Thus we are
led to two conditions to be satisfied in order that (13.11.1) be useful numerically: Both the
function g(¢) and its Fourier transform G(w) must rapidly approach zero for large values
of their respective arguments.

Unfortunately, these two conditions are mutually antagonistic — the Uncertainty Princi-
plein quantum mechanics. There exist strict limits on how rapidly the simultaneous approach
to zero can be in both arguments. According to a theorem of Hardy [2], if g(t) = O(e‘tz)
as [t| — oo and G(w) = O(e™*"/*) as |w| — oo, then g(t) = Ce™"", where C'is a
constant. This can be interpreted as saying that of all functions the Gaussian is the most
rapidly decaying in both ¢ and w, and in this sense is the “best” function to be expressed
numerically as a sampling representation.

Let us then write for the Gaussian g(t) = et

— > —2 . m
=Y et sinc (£ — tn) + e(t) (13.11.3)

n=-—oo

The error e(t) depends on the parameters h and « as well as on ¢, but it is sufficient for
the present purposes to state the bound,

le(t)| < e~ (772 (13.11.4)

which can be understood simply as the order of magnitude of the Fourier transform of the
Gaussian at the point where it “spills over” into the region |w| > 7 /h.

When the summation in (13.11.3) is approximated by one with finite limits, say from
No — N to No + N, where Ny is the integer nearest to —«/h, there is a further truncation
error. However, if N is chosen so that N > 7/(2h?), the truncation error in the summation
is less than the bound given by (13.11.4), and, since this bound is an overestimate, we
shall continue to use it for (13.11.3) as well. The truncated summation gives a remarkably
accurate representation for the Gaussian even for moderate values of N. For example,
le(t)| < 5x107°forh =1/2and N = 7; |e(t)] < 2 x 107 for h = 1/3and N = 15;
and |e(t)] < 7 x 1078 for h = 1/4 and N = 25.
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