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values of the interpolated function for any value of z are obtained by calls (as many
as desired) to a separate routine splint (for “spline interpolation”):

SUBROUTINE splint(xa,ya,y2a,n,x,y)

INTEGER n

REAL x,y,xa(n),y2a(n),ya(n)
Given the arrays xa(1:n) and ya(1:n) of length n, which tabulate a function (with the
xa;’s in order), and given the array y2a(1:n), which is the output from spline above,
and given a value of x, this routine returns a cubic-spline interpolated value y.

INTEGER k,khi,klo

REAL a,b,h
klo=1 We will find the right place in the table by means of bisection.
khi=n This is optimal if sequential calls to this routine are at random
if (khi-klo.gt.1) then values of x. If sequential calls are in order, and closely
k=(khi+klo)/2 spaced, one would do better to store previous values of
if (xa(k).gt.x)then klo and khi and test if they remain appropriate on the
khi=k next call.
else
klo=k
endif
goto 1
endif klo and khi now bracket the input value of x.

h=xa(khi)-xa(klo)
if (h.eq.0.) pause ’bad xa input in splint’ The xa's must be distinct.
a=(xa(khi)-x)/h Cubic spline polynomial is now evaluated.
b=(x-xa(klo))/h
y=a*ya(klo)+bxya(khi)+
((a*x*3-a) *y2a(klo)+(b**3-b) *y2a(khi) ) * (h*x*2) /6.
return
END

CITED REFERENCES AND FURTHER READING:
De Boor, C. 1978, A Practical Guide to Splines (New York: Springer-Verlag).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), §§4.4-4.5.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.4.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §3.8.

3.4 How to Search an Ordered Table

Suppose that you have decided to use some particular interpolation scheme,
such as fourth-order polynomial interpolation, to compute a function f(z) from a
set of tabulated x;’s and f;'s. Then you will need a fast way of finding your place
in the table of x;’s, given some particular value = at which the function evaluation
isdesired. This problemis not properly one of numerical analysis, but it occurs so
often in practice that it would be negligent of us to ignore it.

Formally, theproblemisthis: Given an array of abscissasxx (j), j=1,2,... n,
with the elements either monotonically increasing or monotonically decreasing, and
given a number x, find an integer j such that x lies between xx (j) and xx(j+1).
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For this task, let us define fictitious array elements xx(0) and xx(n+1) equal to
plus or minusinfinity (in whichever order is consistent with the monotonicity of the
table). Then j will aways be between 0 and n, inclusive; a returned value of O
indicates “off-scale” at one end of thetable, n indicates off-scale at the other end.

In most cases, when all is said and done, it is hard to do better than bisection,
which will find the right place in the table in about log,n tries. We aready did use
bisection in the spline evaluation routine splint of the preceding section, so you
might glance back at that. Standing by itself, a bisection routinelookslike this:

SUBROUTINE locate(xx,n,x,j)

INTEGER j,n

REAL x,xx(n)
Given an array xx(1:n), and given a value X, returns a value j such that x is between
xx(j) and xx(j+1). xx(1:n) must be monotonic, either increasing or decreasing. j=0
or j=n is returned to indicate that x is out of range.

INTEGER j1,jm,ju

j1=0 Initialize lower
ju=n+1 and upper limits.
if (ju-jl.gt.1)then If we are not yet done,
jm=(ju+jl)/2 compute a midpoint,
if ((xx(n) .ge.xx(1)) .eqv. (x.ge.xx(jm)))then
jl=jm and replace either the lower limit
else
ju=jm or the upper limit, as appropriate.
endif
goto 10 Repeat until
endif the test condition 10 is satisfied.
if(x.eq.xx(1))then Then set the output
j=1
else if(x.eq.xx(n))then
j=n-1
else
j=i1
endif
return and return.

END

Note the use of the logical equality relation .eqv., which is true when its
two logical operands are either both true or both false. This relation alows the
routine to work for both monotonically increasing and monotonically decreasing
orders of xx(1:n).

Search with Correlated Values

Sometimes you will be in the situation of searching a large table many times,
and with nearly identical abscissas on consecutive searches. For example, you
may be generating a function that is used on the right-hand side of a differentia
equation: Most differential-equation integrators, as we shall see in Chapter 16, call
for right-hand side evauations at points that hop back and forth a bit, but whose
trend moves slowly in the direction of the integration.

In such cases it is wasteful to do a full bisection, ab initio, on each call. The
following routineinstead starts with a guessed position in thetable. It first “hunts,”
either up or down, in increments of 1, then 2, then 4, etc., until the desired value is
bracketed. Second, it then bisectsin the bracketed interval. At wordt, thisroutineis
about afactor of 2 slower than 1locate above (if the hunt phase expands to include
thewholetable). Atbest, it can beafactor of log,n faster thanlocate, if thedesired
pointisusually quitecloseto theinput guess. Figure 3.4.1 comparesthetwo routines.
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(b) bisection phase

Figure 3.4.1. (a) The routine 1locate finds a table entry by bisection. Shown here is the sequence
of steps that converge to element 51 in a table of length 64. (b) The routine hunt searches from a
previous known position in the table by increasing steps, then converges by bisection. Shown hereisa
particularly unfavorable example, converging to element 32 from element 7. A favorable example would
be convergenceto an element near 7, such as 9, which would require just three “hops.”

SUBROUTINE hunt (xx,n,x,jlo)

INTEGER jlo,n

REAL x,xx(n)
Given an array xx(1:n), and given a value X, returns a value jlo such that x is between
xx(jlo) and xx(jlo+1). xx(1:n) must be monotonic, either increasing or decreasing.
jlo=0 or jlo=n is returned to indicate that x is out of range. jlo on input is taken as
the initial guess for jlo on output.

INTEGER inc,jhi,jm

LOGICAL ascnd

ascnd=xx(n) .ge.xx (1) True if ascending order of table, false otherwise.

if(jlo.le.0.or.jlo.gt.n)then Input guess not useful. Go immediately to bisection.
jlo=0
jhi=n+1
goto 3

endif

inc=1 Set the hunting increment.

if (x.ge.xx(jlo) .eqv.ascnd)then Hunt up

jhi=jlo+inc

if (jhi.gt.n)then Done hunting, since off end of table.

jhi=n+1
else if(x.ge.xx(jhi).eqv.ascnd)then Not done hunting,
jlo=jhi
inc=inc+inc so double the increment
goto 1 and try again.
endif Done hunting, value bracketed.
else Hunt down:
jhi=jlo
jlo=jhi-inc
if(jlo.1t.1)then Done hunting, since off end of table.
jlo=0
else if(x.1t.xx(jlo).eqv.ascnd)then Not done hunting,
jhi=jlo
inc=inc+inc so double the increment
goto 2 and try again.
endif Done hunting, value bracketed.
endif Hunt is done, so begin the final bisection phase:

if(jhi-jlo.eq.1)then
if(x.eq.xx(n))jlo=n-1
if(x.eq.xx(1))jlo=1
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return

endif

jm=(jhi+jlo)/2

if (x.ge.xx(jm) .eqv.ascnd) then
jlo=jm

else
jhi=jm

endif

goto 3

END

After the Hunt

The problem: Routines locate and hunt return an index j such that your
desired value lies between table entries xx (j) and xx (j+1), where xx(1:n) isthe
full length of the table. But, to obtain an m-point interpolated value using a routine
like polint (§3.1) or ratint (§3.2), you need to supply much shorter xx and yy
arrays, of lengthm. How do you make the connection?

The solution: Calculate

k =min(max(j-(m-1)/2,1) ,n+1-m)

This expression produces the index of the leftmost member of an m-point set of
points centered (insofar as possible) between j and j+1, but bounded by 1 at the
left and n at the right. FORTRAN then lets you call the interpolation routine with
array addresses offset by k, eg.,

call polint(xx(k),yy(k),m,...)

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §6.2.1.

3.5 Coefficients of the Interpolating Polynomial

Occasionally you may wish to know not theval ue of theinterpolating polynomial
that passes through a (small!) number of points, but the coefficients of that poly-
nomial. A valid use of the coefficients might be, for example, to compute
simultaneousinterpol ated values of thefunction and of several of itsderivatives (see
§5.3), or to convolve a segment of the tabulated function with some other function,
where the moments of that other function (i.e, its convolution with powers of x)
are known anaytically.

However, please be certain that the coefficients arewhat you need. Generally the
coefficients of the interpolating polynomial can be determined much less accurately
than itsvalue a a desired abscissa. Therefore it is not a good idea to determine the
coefficients only for use in calculating interpolating values. Values thus calculated
will not pass exactly through the tabulated points, for example, while values
computed by the routinesin §3.1-§3.3 will pass exactly through such points.
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