7.4 Generation of Random Bits 287

7.4 Generation of Random Bits

This topic is not very useful for programming in high-level languages, but
it can be quite useful when you have access to the machine-language level of a
machine or when you are in a position to build specia-purpose hardware out of
readily available chips.

The problem is how to generate single random bits, with 0 and 1 equaly
probable. Of course you can just generate uniform random deviates between zero
and one and use their high-order bit (i.e., test if they are greater than or less than
0.5). However thistakes alot of arithmetic; there are special-purpose applications,
such as red-time signa processing, where you want to generate bits very much
faster than that.

One method for generating random bits, with two variant implementations, is
based on “primitive polynomials modulo 2.” The theory of these polynomiasis
beyond our scope (although §7.7 and §20.3 will give you small tastes of it). Here,
suffice it to say that there are special polynomials among those whose coefficients
are zero or one. An example is

o84 2® 2?42t af (74.2)
which we can abbreviate by just writing the nonzero powers of x, e.g.,
(18,5,2,1,0)

Every primitive polynomia modulo 2 of order n (=18 above) defines a
recurrence relation for obtaining a new random bit from the n preceding ones. The
recurrence relation is guaranteed to produce a sequence of maximal length, i.e,
cycle through al possible sequences of n bits (except all zeros) before it repeats.
Therefore one can seed the sequence with any initial bit pattern (except all zeros),
and get 2™ — 1 random bits before the sequence repests.

Let the bitsbe numbered from 1 (most recently generated) through n (generated
n steps ago), and denoted a4, as, . . ., a,. We want to give aformulafor a new bit
ag. After generating ao we will shift all the bits by one, so that the old a,, isfinaly
lost, and the new aq becomes a,. We then apply the formulaagain, and so on.

“Method I” isthe easiest to implement in hardware, requiring only a single shift
register n bitslong and afew XOR (“exclusive or” or bit addition mod 2) gates. For
the primitive polynomia given above, the recurrence formulais

apg = ais XOR as XOR as XOR al (742)

The terms that are XOR'’ d together can be thought of as “taps’ on the shift register,
XOR'd into the register’s input. More generally, there is precisely one term for
each nonzero coefficient in the primitive polynomial except the constant (zero bit)
term. So the first term will aways be a,, for a primitive polynomial of degree n,
while the last term might or might not be a,, depending on whether the primitive
polynomia has a term in z'.

It israther cumbersome toillustratethe method in FORTRAN. Assumethat iand
is abitwise AND function, not is bitwise complement, ishft (,1) isleftshift by
one bit, ior ishitwise OR. (These are available in many FORTRAN implementations.)
Then we have the following routine.

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

288 Chapter 7. Random Numbers

18 17 5 4 3 2 1 0
shift left

@

18 17 5 4 3 2 1 0
shift left

(b)

Figure 7.4.1. Two related methods for obtaining random bits from a shift register and a primitive
polynomial modulo 2. (a) The contents of selected taps are combined by exclusive-or (addition modulo
2), and the result is shifted in from the right. This method is easiest to implement in hardware. (b)
Selected bits are modified by exclusive-or with the leftmost bit, which is then shifted in from the right.
This method is easiest to implement in software.

FUNCTION irbitl(iseed)

INTEGER irbitl,iseed,IB1,IB2,IB5,IB18

PARAMETER (IB1=1,IB2=2,IB5=16,IB18=131072) Powers of 2.
Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
is modified for the next call).

LOGICAL newbit The accumulated XOR's.
newbit=iand(iseed,IB18) .ne.0 Get bit 18.
if (iand(iseed,IB5) .ne.0)newbit=.not.newbit XOR with bit 5.
if (iand(iseed,IB2) .ne.0)newbit=.not.newbit XOR with bit 2.
if (iand(iseed,IB1) .ne.0)newbit=.not.newbit XOR with bit 1.
irbit1=0
iseed=iand(ishft(iseed, 1) ,not(IB1)) Leftshift the seed and put a zero in its bit 1.
if (newbit)then But if the XOR calculation gave a 1,
irbiti=1
iseed=ior(iseed,IB1) then put that in bit 1 instead.
endif
return
END

“Method 11" is less suited to direct hardware implementation (though till
possible), but is more suited to machine-language implementation. It modifiesmore
than one bit among the saved n bits as each new bit is generated (Figure 7.4.1). It
generates the maximal length sequence, but not in the same order as Method |. The
prescription for the primitive polynomial (7.4.1) is:

ag = ais
as = as XOR ag

(7.4.3)
ag = a9 XOR ap

a; = aq XOR ap

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

7.4 Generation of Random Bits 289

Some Primitive PolynomialsModulo 2 (after Watson)
1, 0 (51, 6, 3, 1, 0)

(2, 1, 0 (52, 3, O

(3, 1, 0 (53, 6, 2, 1, 0)

(4, 1, 0 (54, 6, 5 4, 3, 2, 0
(5, 2, 0 (55, 6, 2, 1, 0)

(6, 1, 0 (56, 7, 4, 2, 0)

(7, 1, 0 (57, 5 3, 2, 0

(8 4, 3 2 0 (58, 6, 5 1, 0

(9, 4, 0 (59, 6, 5 4, 3 1, 0
(10, 3, 0) (60, 1, O

(11, 2, 0) (61, 5 2, 1, 0

(12, 6, 4, 1, 0 (62, 6, 5 3, 0

(13, 4, 3, 1, 0 (63, 1, O

(14, 5, 3, 1, 0 (64, 4, 3, 1, 0)

(15, 1, 0) (65, 4, 3, 1, 0)

(16, 5, 3, 2, 0) (66, 8 6, 5 3, 2 0)
(17, 3, 0) (67, 5, 2, 1, 0)

(18, 5, 2, 1, 0) (68, 7, 5 1, 0)

(19, 5 2, 1, 0 (69, 6, 5 2, 0

(20, 3, 0) (70, 5, 3, 1, 0)

(21, 2, 0) (71, 5 3, 1, 0

(22, 1, 0) (72, 6, 4, 3, 2, 1, 0)
(23, 5 0) (73, 4, 3, 2, 0

(24, 4, 3, 1, 0 (74, 7, 4, 3, 0)

(25, 3, 0) (75, 6, 3, 1, 0

(26, 6, 2, 1, 0) (76, 5 4, 2, 0)

(27, 5, 2, 1, 0 (77, 6, 5, 2, 0)

(28, 3, 0) (78, 7, 2, 1, 0)

(29, 2, 0) (79, 4, 3, 2, 0

(30, 6, 4, 1, 0) (80, 7, 5, 3 2 1, 0)
(3L, 3, 0) (81, 4 0)

(32, 7,5 3 2 1, 0 (8 8 7,6 4 1, 0
(33, 6, 4, 1, 0 (83, 7, 4, 2, 0)

(3, 7, 6, 5 2 1, 00 (8, 8 7, 5 3 1, 0
(35, 2, 0) (85, 8, 2, 1, 0)

(36, 6, 5 4, 2 1, 0 (8, 6 5 2 0

(37, 5 4, 3 2 1, 0 (87, 7, 5 1, 0

(3, 6 5 1, 0 (88, 8 5 4, 3 1, 0
(39, 4, 0) (89, 6, 5 3, 0

(40, 5, 4 3, 0 (90, 5 3, 2, 0

(41, 3, 0) (91, 7, 6, 5 3, 2, 0)
(42, 5 4, 3 2 1, 0 (92, 6 5 2 0

(43, 6, 4, 3, 0 (93, 2, O

(44, 6, 5 2, 0 (94, 6, 5 1, 0)

(45, 4, 3, 1, 0 (95, 6, 5 4, 2, 1, 0
(46, 8, 5 3, 2 1, 00 (9, 7, 6 4 3, 2 0
(47, 5 0 (97, 6, O

(48, 7, 5 4, 2, 1, 00 (98 7, 4 3 2 1, 0
(49, 6, 5 4, 0 (99, 7, 5 4, 0

(50, 4, 3, 2, 0 (100, 8, 7, 2, 0)

In genera there will be an exclusive-or for each nonzero term in the primitive
polynomial except 0 and n. The nice feature about Method Il is that al the
exclusive-or’s can usually be done as a single masked word XOR (here assumed
to be the FORTRAN function ieor):

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

290 Chapter 7. Random Numbers

FUNCTION irbit2(iseed)

INTEGER irbit2,iseed,IB1,IB2,IB5,IB18,MASK

PARAMETER (IB1=1,IB2=2,IB5=16,IB18=131072,MASK=IB1+IB2+IB5)
Returns as an integer a random bit, based on the 18 low-significance bits in iseed (which
is modified for the next call).

if (iand(iseed,IB18).ne.0)then Change all masked bits, shift, and put 1 into bit 1.
iseed=ior (ishft(ieor(iseed,MASK),1),IB1)

irbit2=1

else Shift and put O into bit 1.
iseed=iand (ishft(iseed, 1) ,not(IB1))
irbit2=0

endif

return

END

A word of caution is: Don’t use sequentia bits from these routines as the bits
of alarge, supposedly random, integer, or as the bits in the mantissa of a supposedly
random floating-point number. They are not very random for that purpose; see
Knuth[1]. Examples of acceptable uses of these random bits are: (i) multiplying a
signal randomly by +1 at arapid “chip rate,” so asto spread its spectrum uniformly
(but recoverably) across some desired bandpass, or (ii) Monte Carlo exploration
of a binary tree, where decisions as to whether to branch left or right are to be
made randomly.

Now we do not want you to go through life thinking that there is something
special about the primitive polynomia of degree 18 used in the above examples.
(We chose 18 because 2'® is small enough for you to verify our claims directly by
numerical experiment.) The accompanying table[2] lists one primitive polynomia
for each degree up to 100. (In fact there exist many such for each degree. For
example, see §7.7 for a complete table up to degree 10.)

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley), pp. 29ff. [1]

Horowitz, P., and Hill, W. 1989, The Art of Electronics, 2nd ed. (Cambridge: Cambridge University
Press), §§9.32-9.37.

Tausworthe, R.C. 1965, Mathematics of Computation, vol. 19, pp. 201-209.
Watson, E.J. 1962, Mathematics of Computation, vol. 16, pp. 368-369. [2]

7.5 Random Sequences Based on Data
Encryption

In Numerical Recipes' first edition, we described how to usethe Data Encryption Standard
(DES) [1-3] for the generation of random numbers. Unfortunately, when implemented in
software in a high-level language like FORTRAN, DES is very slow, so excruciatingly slow,
in fact, that our previous implementation can be viewed as more mischievous than useful.
Here we give a much faster and simpler algorithm which, though it may not be securein the
cryptographic sense, generates about equally good random numbers.

DES, like its progenitor cryptographic system LUCIFER, is a so-called “block product
cipher” [4]. It actson 64 bitsof input by iteratively applying (16 times, in fact) akind of highly

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

