8.6 Determination of Equivalence Classes 337

REAL arr(n),heap(m)

USES sort
Returns in heap(1:m) the largest m elements of the array arr (1:n), with heap (1) guar-
anteed to be the the mth largest element. The array arr is not altered. For efficiency, this
routine should be used only when m < n.

INTEGER 1i,j,k

REAL swap

if (m.gt.n/2.or.m.1t.1) pause ’probable misuse of hpsel’

don i=1,m
heap(i)=arr(i)

enddo 11
call sort(m,heap) Create initial heap by overkilll We assume m < n.
do 12 i=m+1,n For each remaining element...

if (arr(i) .gt.heap(1))then Put it on the heap?
heap(1)=arr(i)
j=1
continue Sift down.
k=2%]
if (k.gt.m)goto 2
if (k.ne.m)then
if (heap(k) .gt.heap(k+1))k=k+1
endif
if (heap(j) .le.heap(k))goto 2
swap=heap (k)
heap (k) =heap(j)
heap(j)=swap
j=k
goto 1
continue
endif
enddo 12
return
end

CITED REFERENCES AND FURTHER READING:
Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), pp. 126ff. [1]

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley).

8.6 Determination of Equivalence Classes

A number of techniquesfor sorting and searching relate to data structures whose details
are beyond the scope of this book, for example, trees, linked lists, etc. These structures and
their manipulations are the bread and butter of computer science, as distinct from numerical
analysis, and there is no shortage of books on the subject.

In working with experimental data, we have found that one particular such manipulation,
namely the determination of equivalence classes, arises sufficiently often to justify inclusion
here.

The problem isthis: There are N “elements’ (or “data points’ or whatever), numbered
1,...,N. You are given pairwise information about whether elements are in the same
equivalence class of “sameness,” by whatever criterion happens to be of interest. For
example, you may have a list of factslike: “Element 3 and element 7 are in the same class;
element 19 and element 4 are in the same class; element 7 and element 12 are in the same
class,” Alternatively, you may have a procedure, given the numbers of two elements

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

338 Chapter 8. Sorting

j and k, for deciding whether they are in the same class or different classes. (Recall that
an equivalence relation can be anything satisfying the RST properties: reflexive, symmetric,
transitive. This is compatible with any intuitive definition of “sameness.”)

The desired output is an assignment to each of the V elements of an eguivalence class
number, such that two elements are in the same class if and only if they are assigned the
same class number.

Efficient algorithms work like this: Let F'(j) bethe classor “family” number of element
j. Start off with each element in its own family, so that F'(j) = j. Thearray F(j) can be
interpreted asatree structure, where F'(j) denotesthe parent of ;5. If wearrangefor eachfamily
to be its own tree, digoint from all the other “family trees,” then we can label each family
(equivalence class) by its most senior great-great-. . .grandparent. The detailed topology of
the tree doesn’'t matter at all, aslong aswe graft each related element onto it somewhere.

Therefore, we process each elemental datum “; is eguivalent to k£” by (i) tracking j
up to its highest ancestor, (ii) tracking & up to its highest ancestor, (iii) giving j to k asa
new parent, or vice versa (it makes no difference). After processing all the relations, we go
through all the elements j and reset their F'(j)’s to their highest possible ancestors, which
then label the equivalence classes.

The following routine, based on Knuth [1], assumes that there are m elemental pieces
of information, stored in two arrays of length m, 1ista,listb, the interpretation being
that 1ista(j) and 1istb(j), j=1...m are the numbers of two elements which (we are
thus told) are related.

SUBROUTINE eclass(nf,n,lista,listb,m)

INTEGER m,n,lista(m),listb(m) ,nf (n)
Given m equivalences between pairs of n individual elements in the form of the input arrays
lista(1:m) and 1istb(1:m), this routine returns in nf (1:n) the number of the equiva-
lence class of each of the n elements, integers between 1 and n (not all such integers used).

INTEGER j,k,1

don k=1,n Initialize each element its own class.
nf (k) =k
enddo 11
do1w 1=1,m For each piece of input information...
j=lista(l)
if (nf(j) .ne.j)then Track first element up to its ancestor.
j=nf (j)
goto 1
endif
k=1istb(1)
if (nf (k) .ne.k)then Track second element up to its ancestor.
k=nf (k)
goto 2
endif
if (j.ne.k)nf (j)=k If they are not already related, make them so.
enddo 12
do13 j=1,n Final sweep up to highest ancestors.

if (nf(j) .ne.nf(nf(j)))then
nf (j)=nf (nf (j))
goto 3
endif
enddo 13
return
END

Alternatively, we may be ableto construct a procedureequiv (j, k) that returnsavalue
.true. if elements j and k are related, or .false. if they are not. Then we want to loop
over all pairs of elementsto get the complete picture. D. Eardley has devised a clever way of
doing this while simultaneously sweeping the tree up to high ancestorsin a manner that keeps
it current and obviates most of the final sweep phase:

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

8.6 Determination of Equivalence Classes 339

SUBROUTINE eclazz(nf,n,equiv)
INTEGER n,nf (n)
LOGICAL equiv
EXTERNAL equiv
Given a user-supplied logical function equiv which tells whether a pair of elements, each
in the range 1. . .n, are related, return in nf equivalence class numbers for each element.
INTEGER jj,kk

nf(1)=1
do12 jj=2,n Loop over first element of all pairs.
nf(jj)=3]
do 11 kk=1,jj-1 Loop over second element of all pairs.
nf (kk)=nf (nf (kk)) Sweep it up this much.
if (equiv(jj,kk)) nf (nf (nf(kk)))=jj Good exercise for the reader to figure
enddo 11 out why this much ancestry is
enddo 12 necessary!
do jj=1,n Only this much sweeping is needed finally.
nf (jj)=nf (nf (jj))
enddo 13
return
END

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1968, Fundamental Algorithms, vol. 1 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §2.3.3. [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapter 30.

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes

