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This equation, if used with ¢ ranging over the roots already polished, will prevent a
tentative root from spuriously hopping to another one’s true root. It is an example
of so-called zero suppression as an aternative to true deflation.

Muller's method, which was described above, can aso be useful at the
polishing stage.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 7. [1]

Peters G., and Wilkinson, J.H. 1971, Journal of the Institute of Mathematics and its Applications,
vol. 8, pp. 16-35. [2]

IMSL Math/Library Users Manual (IMSL Inc., 2500 CityWest Boulevard, Houston TX 77042). [3]

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §8.9-8.13. [4]

Adams, D.A. 1967, Communications of the ACM, vol. 10, pp. 655-658. [5]

Johnson, L.W., and Riess, R.D. 1982, Numerical Analysis, 2nd ed. (Reading, MA: Addison-
Wesley), §4.4.3. [6]

Henrici, P. 1974, Applied and Computational Complex Analysis, vol. 1 (New York: Wiley).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§65.5-5.9.

9.6 Newton-Raphson Method for Nonlinear
Systems of Equations

We make an extreme, but wholly defensible, statement: There are no good, gen-
eral methods for solving systems of more than one nonlinear equation. Furthermore,
it isnot hard to see why (very likely) there never will be any good, general methods:
Consider the case of two dimensions, where we want to solve simultaneously

f(z,y)
9(z,y)

z,y) =0
(9.6.1)
z,y) =0

The functions f and g are two arbitrary functions, each of which has zero
contour linesthat dividethe (x, y) planeinto regionswhere their respective function
is positive or negative. These zero contour boundaries are of interest to us. The
solutionsthat we seek are those points (if any) that are common to the zero contours
of f and g (see Figure 9.6.1). Unfortunately, the functions f and g have, in general,
no relation to each other at al! Thereis nothing specia about a common point from
either f’s point of view, or from ¢’s. In order to find all common points, which are
the solutionsof our nonlinear equations, wewill (in general) have to do neither more
nor less than map out the full zero contours of both functions. Note further that
the zero contourswill (in general) consist of an unknown number of disoint closed
curves. How can we ever hopeto know when we have found all such disjoint pieces?

For problems in more than two dimensions, we need to find points mutually
common to N unrelated zero-contour hypersurfaces, each of dimension N — 1.
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Figure 9.6.1.  Solution of two nonlinear equations in two unknowns. Solid curves refer to f(z,y),
dashed curves to g(z,y). Each equation divides the (z,y) plane into positive and negative regions,
bounded by zero curves. The desired solutions are the intersections of these unrelated zero curves. The
number of solutions is a priori unknown.

You see that root finding becomes virtually impossible without insight! You
will aimost always have to use additional information, specific to your particular
problem, to answer such basic questions as, “Do | expect a unique solution?’ and
“Approximately where?’ Acton [1] has a good discussion of some of the particular
strategies that can be tried.

In this section we will discuss the simplest multidimensional root finding
method, Newton-Raphson. This method gives you a very efficient means of
converging to a root, if you have a sufficiently good initial guess. It can also
spectacularly fail to converge, indicating (though not proving) that your putative
root does not exist nearby. In §9.7 we discuss more sophisticated implementations
of the Newton-Raphson method, which try to improve on Newton-Raphson’s poor
global convergence. A multidimensional generalization of the secant method, called
Broyden’s method, is also discussed in §9.7.

A typical problemgives N functional relationsto be zeroed, involving variables
it = 1,2,...,N:

Fl-(xl,xz,...,xN):O 121,2,,N (962)

We let x denote the entire vector of values z; and F denote the entire vector of
functions F;. In the neighborhood of x, each of the functions F; can be expanded
in Taylor series

OF;

o, Sz + O(8%?). (9.6.3)

N
F,(x+ 6x) = F;(X) + Z
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374 Chapter 9.  Root Finding and Nonlinear Sets of Equations

The matrix of partial derivatives appearing in eguation (9.6.3) is the Jacobian
matrix J:

OF;
= = 9.6.4
JJ axj ( )
In matrix notation equation (9.6.3) is
F(X + 6x) = F(X) + J - 6x + O(6x?). (9.6.5)

By neglecting terms of order §x? and higher and by setting F(x + 6x) = 0, we
obtain a set of linear equationsfor the corrections §x that move each function closer
to zero simultaneously, namely

J.6x=—F. (9.6.6)

Matrix eguation (9.6.6) can be solved by LU decomposition as described in
§2.3. The corrections are then added to the solution vector,

Xnew = Xold + OX (967)

and the process isiterated to convergence. In genera it isagood ideato check the
degree to which both functions and variables have converged. Once either reaches
machine accuracy, the other won’t change.

Thefollowingroutinemnewt performsntrial iterationsstartingfroman initial
guess at the solution vector x of length n variables. Iteration stopsif either the sum
of the magnitudes of the functions F; islessthan sometolerance tolf, or the sum of
the absolute values of the correctionsto z; islessthan some tolerance tolx. mnewt
calls auser supplied subroutineusrfun which must return the function values F and
the Jacobian matrix J. If J is difficult to compute anaytically, you can try having
usrfun call the routine fdjac of §9.7 to compute the partial derivatives by finite
differences. You should not make ntrial too big; rather inspect to see what is
happening before continuing for some further iterations.

SUBROUTINE mnewt (ntrial,x,n,tolx,tolf)

INTEGER n,ntrial,NP

REAL tolf,tolx,x(n)

PARAMETER (NP=15) Up to NP variables.

USES | ubksb, | udcnp, usrfun
Given an initial guess x for a root in n dimensions, take ntrial Newton-Raphson steps to
improve the root. Stop if the root converges in either summed absolute variable increments
tolx or summed absolute function values tolf.

INTEGER i,k,indx(NP)

REAL d,errf,errx,fjac(NP,NP),fvec(NP),p(NP)

do 14 k=1,ntrial
call usrfun(x,n,NP,fvec,fjac) User subroutine supplies function values at x in fvec

errf=0. and Jacobian matrix in fjac.

don i=1,n Check function convergence.
errf=errf+abs(fvec(i))

enddo 11

if (errf.le.tolf)return

do1 i=1,n Right-hand side of linear equations.

p(i)=-fvec(i)
enddo 12
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9.6 Newton-Raphson Method for Nonlinear Systems of Equations 375

call ludcmp(fjac,n,NP,indx,d) Solve linear equations using LU decomposition.
call lubksb(fjac,n,NP,indx,p)
errx=0. Check root convergence.
do13 i=1,n Update solution.
errx=errx+abs(p(i))
x(1)=x(1)+p (1)
enddo 13
if (errx.le.tolx)return
enddo 14
return
END

Newton’s Method versus Minimization

In the next chapter, we will find that there are efficient general techniques for
finding a minimum of a function of many variables. Why is that task (relatively)
easy, while multidimensiona root finding is often quite hard? Isn't minimization
equivalent tofinding azero of an N-dimensional gradient vector, not so different from
zeroingan N-dimensional function? No! Thecomponentsof agradient vector arenot
independent, arbitrary functions. Rather, they obey so-called integrability conditions
that are highly restrictive. Put crudely, you can always find a minimum by dliding
downhill on a single surface. The test of “downhillness’ is thus one-dimensional.
There is no analogous conceptual procedure for finding a multidimensional root,
where“ downhill” must mean simultaneously downhill in N separate function spaces,
thus allowing a multitude of trade-offs, as to how much progressin one dimension
is worth compared with progress in another.

It might occur to you to carry out multidimensional root finding by collapsing
all these dimensionsinto one: Add up the sums of squares of theindividual functions
F; to get a master function F' which (i) is positive definite, and (ii) has a global
minimum of zero exactly at al solutions of the original set of nonlinear equations.
Unfortunately, as you will see in the next chapter, the efficient algorithmsfor finding
minima come to rest on globa and local minima indiscriminately. You will often
find, to your great dissatisfaction, that your function F' has a great number of loca
minima. InFigure9.6.1, for example, thereislikely to bealocal minimum wherever
the zero contoursof f and g make a close approach to each other. The point labeled
M is such a point, and one sees that there are no nearby roots.

However, we will now see that sophisticated strategies for multidimensional
root finding can in fact make use of the idea of minimizing a master function F', by
combining it with Newton's method applied to the full set of functions F;. While
such methods can still occasionally fail by coming to rest on alocal minimum of
F, they often succeed where a direct attack via Newton's method alone fails. The
next section deals with these methods.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 14. [1]

Ostrowski, A.M. 1966, Solutions of Equations and Systems of Equations, 2nd ed. (New York:
Academic Press).

Ortega, J., and Rheinboldt, W. 1970, lterative Solution of Nonlinear Equations in Several Vari-
ables (New York: Academic Press).

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"alemyjos sadinay [eauswnN Aq z66T-986T (O) WyBLUAdOD swelbold ssaid Ausianiun sbpuqued Aq 266T-986T (O) WbLAdoD
(X-790€7-T2S-0 NESI) ONILNDNOD DIHILNTIOS 40 18V FHL 22 NVH1HO4d NI S3dIDIY TvOIHIWNN woyy abed sjdwes



376 Chapter 9.  Root Finding and Nonlinear Sets of Equations

9.7 Globally Convergent Methods for Nonlinear
Systems of Equations

We have seen that Newton's method for solving nonlinear equations has an
unfortunate tendency to wander off into the wild blue yonder if the initial guess
is not sufficiently close to the root. A global method is one that converges to
a solution from almost any starting point. In this section we will develop an
algorithm that combines the rapid local convergence of Newton's method with a
globally convergent strategy that will guarantee some progress towards the solution
at each iteration. The algorithm is closely related to the quasi-Newton method of
minimization which we will describe in §10.7.

Recall our discussion of §9.6: the Newton step for the set of equations

F(x)=0 (9.7.1)
is
Xnew = Xold + 0X (9.7.2)
where
ox=-J"1.F (9.7.3)

Here J isthe Jacobian matrix. How do we decide whether to accept the Newton step
5x? A reasonable strategy is to require that the step decrease |[F|2 = F - F. Thisis
the same requirement we would impose if we were trying to minimize

f= %F F (9.7.4)

(The % is for later convenience.) Every solution to (9.7.1) minimizes (9.7.4), but
there may be loca minima of (9.7.4) that are not solutions to (9.7.1). Thus, as
already mentioned, simply applying one of our minimum finding algorithms from
Chapter 10 to (9.7.4) is not a good idea.

To develop a better strategy, note that the Newton step (9.7.3) is a descent
direction for f:

Vf 6x=(F-J)-(-3"'-F)=—-F.-F<0 (9.7.5)

Thus our strategy is quite simple: We always first try the full Newton step,
because once we are close enough to the solution we will get quadratic convergence.
However, we check at each iteration that the proposed step reduces f. If not, we
backtrack along the Newton direction until we have an acceptable step. Because the
Newton step isadescent direction for f, we are guaranteed to find an acceptable step
by backtracking. We will discuss the backtracking algorithm in more detail bel ow.

Notethat thismethod essentially minimizes f by taking Newton steps designed
to bring F to zero. Thisisnot equivalent to minimizing f directly by taking Newton
steps designed to bring V f to zero. While the method can still occasionally fail by
landing on alocal minimum of f, thisis quite rare in practice. The routine newt
below will warn you if thishappens. The remedy isto try anew starting point.
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