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Chapter B4. Integration of Functions

SUBROUTINE trapzd(func,a,b,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
This routine computes the nth stage of refinement of an extended trapezoidal rule. func is
input as the name of the function to be integrated between limits a and b, also input. When

called with n=1, the routine returns as s the crudest estimate of
∫ b
a f(x)dx. Subsequent

calls with n=2,3,... (in that sequential order) will improve the accuracy of s by adding 2n-2

additional interior points. s should not be modified between sequential calls.
REAL(SP) :: del,fsum
INTEGER(I4B) :: it
if (n == 1) then

s=0.5_sp*(b-a)*sum(func( (/ a,b /) ))
else

it=2**(n-2)
del=(b-a)/it This is the spacing of the points to be added.
fsum=sum(func(arth(a+0.5_sp*del,del,it)))
s=0.5_sp*(s+del*fsum) This replaces s by its refined value.

end if
END SUBROUTINE trapzd

f90
While most of the quadrature routines in this chapter are coded as
functions,trapzd is a subroutine because the arguments that returns the
function value must also be supplied as an input parameter. We could

change the subroutine into a function by declarings to be a local variable with the
SAVE attribute. However, this would prevent us from being able to use the routine
recursively to do multidimensional quadrature (seequad3d on p. 1065). Whens
is left as an argument, a fresh copy is created on each recursive call. As aSAVE’d
variable, by contrast, its value would get overwritten on each call, and the code
would not be properly “re-entrant.”

s=0.5_sp*(b-a)*sum(func( (/ a,b /) )) Note how we use the(/.../) con-
struct to supply a set of scalar arguments to a vector function.

� � �

1052
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FUNCTION qtrap(func,a,b)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : trapzd
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qtrap
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: JMAX=20
REAL(SP), PARAMETER :: EPS=1.0e-6_sp, UNLIKELY=-1.0e30_sp

Returns the integral of the function func from a to b. The parameter EPS should be set to
the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum
allowed number of steps. Integration is performed by the trapezoidal rule.

REAL(SP) :: olds
INTEGER(I4B) :: j
olds=UNLIKELY Any number that is unlikely to be the average of the

function at its endpoints will do here.do j=1,JMAX
call trapzd(func,a,b,qtrap,j)
if (j > 5) then Avoid spurious early convergence.

if (abs(qtrap-olds) < EPS*abs(olds) .or. &
(qtrap == 0.0 .and. olds == 0.0)) RETURN

end if
olds=qtrap

end do
call nrerror(’qtrap: too many steps’)
END FUNCTION qtrap

� � �

FUNCTION qsimp(func,a,b)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : trapzd
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qsimp
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: JMAX=20
REAL(SP), PARAMETER :: EPS=1.0e-6_sp, UNLIKELY=-1.0e30_sp

Returns the integral of the function func from a to b. The parameter EPS should be set to
the desired fractional accuracy and JMAX so that 2 to the power JMAX-1 is the maximum
allowed number of steps. Integration is performed by Simpson’s rule.

INTEGER(I4B) :: j
REAL(SP) :: os,ost,st
ost=UNLIKELY
os= UNLIKELY
do j=1,JMAX

call trapzd(func,a,b,st,j)
qsimp=(4.0_sp*st-ost)/3.0_sp Compare equation (4.2.4).
if (j > 5) then Avoid spurious early convergence.

if (abs(qsimp-os) < EPS*abs(os) .or. &
(qsimp == 0.0 .and. os == 0.0)) RETURN

end if
os=qsimp
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ost=st
end do
call nrerror(’qsimp: too many steps’)
END FUNCTION qsimp

� � �

FUNCTION qromb(func,a,b)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : polint,trapzd
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qromb
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: JMAX=20,JMAXP=JMAX+1,K=5,KM=K-1
REAL(SP), PARAMETER :: EPS=1.0e-6_sp

Returns the integral of the function func from a to b. Integration is performed by Romberg’s
method of order 2K, where, e.g., K=2 is Simpson’s rule.
Parameters: EPS is the fractional accuracy desired, as determined by the extrapolation er-
ror estimate; JMAX limits the total number of steps; K is the number of points used in the
extrapolation.

REAL(SP), DIMENSION(JMAXP) :: h,s These store the successive trapezoidal ap-
proximations and their relative stepsizes.REAL(SP) :: dqromb

INTEGER(I4B) :: j
h(1)=1.0
do j=1,JMAX

call trapzd(func,a,b,s(j),j)
if (j >= K) then

call polint(h(j-KM:j),s(j-KM:j),0.0_sp,qromb,dqromb)
if (abs(dqromb) <= EPS*abs(qromb)) RETURN

end if
s(j+1)=s(j)
h(j+1)=0.25_sp*h(j) This is a key step: The factor is 0.25 even

though the stepsize is decreased by only
0.5. This makes the extrapolation a poly-
nomial in h2 as allowed by equation (4.2.1),
not just a polynomial in h.

end do
call nrerror(’qromb: too many steps’)
END FUNCTION qromb

� � �

SUBROUTINE midpnt(func,a,b,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
This routine computes the nth stage of refinement of an extended midpoint rule. func is
input as the name of the function to be integrated between limits a and b, also input. When
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called with n=1, the routine returns as s the crudest estimate of
∫ b
a f(x)dx. Subsequent

calls with n=2,3,... (in that sequential order) will improve the accuracy of s by adding

(2/3)× 3n-1 additional interior points. s should not be modified between sequential calls.
REAL(SP) :: del
INTEGER(I4B) :: it
REAL(SP), DIMENSION(2*3**(n-2)) :: x
if (n == 1) then

s=(b-a)*sum(func( (/0.5_sp*(a+b)/) ))
else

it=3**(n-2)
del=(b-a)/(3.0_sp*it) The added points alternate in spacing between

del and 2*del.x(1:2*it-1:2)=arth(a+0.5_sp*del,3.0_sp*del,it)
x(2:2*it:2)=x(1:2*it-1:2)+2.0_sp*del
s=s/3.0_sp+del*sum(func(x)) The new sum is combined with the old integral

to give a refined integral.end if
END SUBROUTINE midpnt

f90
midpnt is a subroutine and not a function for the same reasons astrapzd.
This is also true for the othermid... routines below.

s=(b-a)*sum(func( (/0.5_sp*(a+b)/) )) Here we use(/.../) to pass a single
scalar argument to a vector function.

� � �

FUNCTION qromo(func,a,b,choose)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : polint
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qromo
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

SUBROUTINE choose(funk,aa,bb,s,n)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
END SUBROUTINE choose

END INTERFACE
INTEGER(I4B), PARAMETER :: JMAX=14,JMAXP=JMAX+1,K=5,KM=K-1
REAL(SP), PARAMETER :: EPS=1.0e-6

Romberg integration on an open interval. Returns the integral of the function func from a
to b, using any specified integrating subroutine choose and Romberg’s method. Normally
choose will be an open formula, not evaluating the function at the endpoints. It is assumed
that choose triples the number of steps on each call, and that its error series contains only
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even powers of the number of steps. The routines midpnt, midinf, midsql, midsqu,
and midexp are possible choices for choose. The parameters have the same meaning as
in qromb.

REAL(SP), DIMENSION(JMAXP) :: h,s
REAL(SP) :: dqromo
INTEGER(I4B) :: j
h(1)=1.0
do j=1,JMAX

call choose(func,a,b,s(j),j)
if (j >= K) then

call polint(h(j-KM:j),s(j-KM:j),0.0_sp,qromo,dqromo)
if (abs(dqromo) <= EPS*abs(qromo)) RETURN

end if
s(j+1)=s(j)
h(j+1)=h(j)/9.0_sp This is where the assumption of step tripling and an even

error series is used.end do
call nrerror(’qromo: too many steps’)
END FUNCTION qromo

� � �

SUBROUTINE midinf(funk,aa,bb,s,n)
USE nrtype; USE nrutil, ONLY : arth,assert
IMPLICIT NONE
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
This routine is an exact replacement for midpnt, i.e., returns as s the nth stage of refinement
of the integral of funk from aa to bb, except that the function is evaluated at evenly spaced
points in 1/x rather than in x. This allows the upper limit bb to be as large and positive
as the computer allows, or the lower limit aa to be as large and negative, but not both.
aa and bb must have the same sign.

REAL(SP) :: a,b,del
INTEGER(I4B) :: it
REAL(SP), DIMENSION(2*3**(n-2)) :: x
call assert(aa*bb > 0.0, ’midinf args’)
b=1.0_sp/aa These two statements change the limits of integration ac-

cordingly.a=1.0_sp/bb
if (n == 1) then From this point on, the routine is exactly identical to midpnt.

s=(b-a)*sum(func( (/0.5_sp*(a+b)/) ))
else

it=3**(n-2)
del=(b-a)/(3.0_sp*it)
x(1:2*it-1:2)=arth(a+0.5_sp*del,3.0_sp*del,it)
x(2:2*it:2)=x(1:2*it-1:2)+2.0_sp*del
s=s/3.0_sp+del*sum(func(x))

end if
CONTAINS

FUNCTION func(x) This internal function effects the change of variable.
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
func=funk(1.0_sp/x)/x**2
END FUNCTION func

END SUBROUTINE midinf
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f90
FUNCTION func(x) The change of variable could have been effected by a
statement function inmidinf itself. However, the statement function is
a Fortran 77 feature that is deprecated in Fortran 90 because it does not

allow the benefits of having an explicit interface, i.e., a complete set of specification
statements. Statement functions can always be coded as internal subprograms instead.

SUBROUTINE midsql(funk,aa,bb,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
This routine is an exact replacement for midpnt, i.e., returns as s the nth stage of refinement
of the integral of funk from aa to bb, except that it allows for an inverse square-root
singularity in the integrand at the lower limit aa.

REAL(SP) :: a,b,del
INTEGER(I4B) :: it
REAL(SP), DIMENSION(2*3**(n-2)) :: x
b=sqrt(bb-aa) These two statements change the limits of integration ac-

cordingly.a=0.0
if (n == 1) then From this point on, the routine is exactly identical to midpnt.

s=(b-a)*sum(func( (/0.5_sp*(a+b)/) ))
else

it=3**(n-2)
del=(b-a)/(3.0_sp*it)
x(1:2*it-1:2)=arth(a+0.5_sp*del,3.0_sp*del,it)
x(2:2*it:2)=x(1:2*it-1:2)+2.0_sp*del
s=s/3.0_sp+del*sum(func(x))

end if
CONTAINS

FUNCTION func(x) This internal function effects the change of variable.
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
func=2.0_sp*x*funk(aa+x**2)
END FUNCTION func

END SUBROUTINE midsql

SUBROUTINE midsqu(funk,aa,bb,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
This routine is an exact replacement for midpnt, i.e., returns as s the nth stage of refinement
of the integral of funk from aa to bb, except that it allows for an inverse square-root
singularity in the integrand at the upper limit bb.

REAL(SP) :: a,b,del
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INTEGER(I4B) :: it
REAL(SP), DIMENSION(2*3**(n-2)) :: x
b=sqrt(bb-aa) These two statements change the limits of integration ac-

cordingly.a=0.0
if (n == 1) then From this point on, the routine is exactly identical to midpnt.

s=(b-a)*sum(func( (/0.5_sp*(a+b)/) ))
else

it=3**(n-2)
del=(b-a)/(3.0_sp*it)
x(1:2*it-1:2)=arth(a+0.5_sp*del,3.0_sp*del,it)
x(2:2*it:2)=x(1:2*it-1:2)+2.0_sp*del
s=s/3.0_sp+del*sum(func(x))

end if
CONTAINS

FUNCTION func(x) This internal function effects the change of variable.
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
func=2.0_sp*x*funk(bb-x**2)
END FUNCTION func

END SUBROUTINE midsqu

SUBROUTINE midexp(funk,aa,bb,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: aa,bb
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION funk(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: funk
END FUNCTION funk

END INTERFACE
This routine is an exact replacement for midpnt, i.e., returns as s the nth stage of refinement
of the integral of funk from aa to bb, except that bb is assumed to be infinite (value passed
not actually used). It is assumed that the function funk decreases exponentially rapidly at
infinity.

REAL(SP) :: a,b,del
INTEGER(I4B) :: it
REAL(SP), DIMENSION(2*3**(n-2)) :: x
b=exp(-aa) These two statements change the limits of integration ac-

cordingly.a=0.0
if (n == 1) then From this point on, the routine is exactly identical to midpnt.

s=(b-a)*sum(func( (/0.5_sp*(a+b)/) ))
else

it=3**(n-2)
del=(b-a)/(3.0_sp*it)
x(1:2*it-1:2)=arth(a+0.5_sp*del,3.0_sp*del,it)
x(2:2*it:2)=x(1:2*it-1:2)+2.0_sp*del
s=s/3.0_sp+del*sum(func(x))

end if
CONTAINS

FUNCTION func(x) This internal function effects the change of variable.
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
func=funk(-log(x))/x
END FUNCTION func

END SUBROUTINE midexp

� � �
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SUBROUTINE gauleg(x1,x2,x,w)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
REAL(DP), PARAMETER :: EPS=3.0e-14_dp

Given the lower and upper limits of integration x1 and x2, this routine returns arrays x and w
of length N containing the abscissas and weights of the Gauss-LegendreN -point quadrature
formula. The parameter EPS is the relative precision. Note that internal computations are
done in double precision.

INTEGER(I4B) :: its,j,m,n
INTEGER(I4B), PARAMETER :: MAXIT=10
REAL(DP) :: xl,xm
REAL(DP), DIMENSION((size(x)+1)/2) :: p1,p2,p3,pp,z,z1
LOGICAL(LGT), DIMENSION((size(x)+1)/2) :: unfinished
n=assert_eq(size(x),size(w),’gauleg’)
m=(n+1)/2 The roots are symmetric in the interval,

so we only have to find half of them.xm=0.5_dp*(x2+x1)
xl=0.5_dp*(x2-x1)
z=cos(PI_D*(arth(1,1,m)-0.25_dp)/(n+0.5_dp)) Initial approximations to the roots.
unfinished=.true.
do its=1,MAXIT Newton’s method carried out simultane-

ously on the roots.where (unfinished)
p1=1.0
p2=0.0

end where
do j=1,n Loop up the recurrence relation to get

the Legendre polynomials evaluated
at z.

where (unfinished)
p3=p2
p2=p1
p1=((2.0_dp*j-1.0_dp)*z*p2-(j-1.0_dp)*p3)/j

end where
end do
p1 now contains the desired Legendre polynomials. We next compute pp, the derivatives,
by a standard relation involving also p2, the polynomials of one lower order.

where (unfinished)
pp=n*(z*p1-p2)/(z*z-1.0_dp)
z1=z
z=z1-p1/pp Newton’s method.
unfinished=(abs(z-z1) > EPS)

end where
if (.not. any(unfinished)) exit

end do
if (its == MAXIT+1) call nrerror(’too many iterations in gauleg’)
x(1:m)=xm-xl*z Scale the root to the desired interval,
x(n:n-m+1:-1)=xm+xl*z and put in its symmetric counterpart.
w(1:m)=2.0_dp*xl/((1.0_dp-z**2)*pp**2) Compute the weight
w(n:n-m+1:-1)=w(1:m) and its symmetric counterpart.
END SUBROUTINE gauleg

f90
Often we have an iterative procedure that has to be applied until all
components of a vector have satisfied a convergence criterion. Some
components of the vector might converge sooner than others, and it is

inefficient on a small-scale parallel (SSP) machine to continue iterating on those
components. The general structure we use for such an iteration is exemplified by
the following lines fromgauleg:

LOGICAL(LGT), DIMENSION((size(x)+1)/2) :: unfinished
...

unfinished=.true.
do its=1,MAXIT
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where (unfinished)
...

unfinished=(abs(z-z1) > EPS)
end where
if (.not. any(unfinished)) exit

end do
if (its == MAXIT+1) call nrerror(’too many iterations in gauleg’)

We use the logical maskunfinished to control which vector components are
processed inside thewhere. The mask gets updated on each iteration by testing
whether any further vector components have converged. When all have converged,
we exit the iteration loop. Finally, we check the value ofits to see whether
the maximum allowed number of iterations was exceeded before all components
converged.

The logical expression controlling thewhere block (in this caseunfinished)
gets evaluated completely on entry into thewhere, and it is then perfectly fine
to modify it inside the block. The modification affects only thenext execution
of the where.

On a strictlyserial machine, there is of course some penalty associated with the
above scheme: after a vector component converges, its corresponding component
in unfinished is redundantly tested on each further iteration, until the slowest-
converging component is done. If the number of iterations required does not
vary too greatly from component to component, this is a minor, often negligible,
penalty. However, one should be on the alert against algorithms whose worst-case
convergence could differ from typical convergence by orders of magnitude. For
these, one would need to implement a more complicated packing-unpacking scheme.
(See discussion in Chapter B6, especially introduction, p. 1083, and notes for
factrl, p. 1087.)

SUBROUTINE gaulag(x,w,alf)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), INTENT(IN) :: alf
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
REAL(DP), PARAMETER :: EPS=3.0e-13_dp

Given alf, the parameter α of the Laguerre polynomials, this routine returns arrays x and w
of length N containing the abscissas and weights of the N -point Gauss-Laguerre quadrature
formula. The abscissas are returned in ascending order. The parameter EPS is the relative
precision. Note that internal computations are done in double precision.

INTEGER(I4B) :: its,j,n
INTEGER(I4B), PARAMETER :: MAXIT=10
REAL(SP) :: anu
REAL(SP), PARAMETER :: C1=9.084064e-01_sp,C2=5.214976e-02_sp,&

C3=2.579930e-03_sp,C4=3.986126e-03_sp
REAL(SP), DIMENSION(size(x)) :: rhs,r2,r3,theta
REAL(DP), DIMENSION(size(x)) :: p1,p2,p3,pp,z,z1
LOGICAL(LGT), DIMENSION(size(x)) :: unfinished
n=assert_eq(size(x),size(w),’gaulag’)
anu=4.0_sp*n+2.0_sp*alf+2.0_sp Initial approximations to the roots go into z.
rhs=arth(4*n-1,-4,n)*PI/anu
r3=rhs**(1.0_sp/3.0_sp)
r2=r3**2
theta=r3*(C1+r2*(C2+r2*(C3+r2*C4)))
z=anu*cos(theta)**2
unfinished=.true.
do its=1,MAXIT Newton’s method carried out simultaneously on

the roots.where (unfinished)
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p1=1.0
p2=0.0

end where
do j=1,n Loop up the recurrence relation to get the La-

guerre polynomials evaluated at z.where (unfinished)
p3=p2
p2=p1
p1=((2.0_dp*j-1.0_dp+alf-z)*p2-(j-1.0_dp+alf)*p3)/j

end where
end do
p1 now contains the desired Laguerre polynomials. We next compute pp, the derivatives,
by a standard relation involving also p2, the polynomials of one lower order.

where (unfinished)
pp=(n*p1-(n+alf)*p2)/z
z1=z
z=z1-p1/pp Newton’s formula.
unfinished=(abs(z-z1) > EPS*z)

end where
if (.not. any(unfinished)) exit

end do
if (its == MAXIT+1) call nrerror(’too many iterations in gaulag’)
x=z Store the root and the weight.
w=-exp(gammln(alf+n)-gammln(real(n,sp)))/(pp*n*p2)
END SUBROUTINE gaulag

The key difficulty in parallelizing this routine starting from the Fortran 77
version is that the initial guesses for the roots of the Laguerre polynomials
were given in terms of previously determined roots. This prevents one

from finding all the roots simultaneously. The solution is to come up with a new
approximation to the roots that is a simple explicit formula, like the formula we
used for the Legendre roots ingauleg.

We start with the approximation toLα
n(x) given in equation (10.15.8) of[1]. We

keep only the first term and ask when it is zero. This gives the following prescription
for the kth rootxk of Lα

n(x): Solve forθ the equation

2θ− sin 2θ =
4n− 4k + 3

4n+ 2α + 2
π (B4.1)

Since1 ≤ k ≤ n andα > −1, we can always find a value such that0 < θ < π/2.
Then the approximation to the root is

xk = (4n + 2α+ 2) cos2 θ (B4.2)

This typically gives 3-digit accuracy, more than enough for the Newton iteration to
be able to refine the root. Unfortunately equation (B4.1) is not an explicit formula
for θ. (You may recognize it as being of the same form as Kepler’s equation in
mechanics.) If we call the right-hand side of (B4.1)y, then we can get an explicit
formula by working out the power series fory1/3 nearθ = 0 (using a computer
algebra program). Next invert the series to giveθ as a function ofy1/3. Finally,
economize the series (see§5.11). The result is the concise approximation

θ = 0.9084064y1/3 + 5.214976× 10−2y + 2.579930× 10−3y5/3

+ 3.986126× 10−3y7/3 (B4.3)
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SUBROUTINE gauher(x,w)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
REAL(DP), PARAMETER :: EPS=3.0e-13_dp,PIM4=0.7511255444649425_dp

This routine returns arrays x and w of length N containing the abscissas and weights of
the N -point Gauss-Hermite quadrature formula. The abscissas are returned in descending
order. Note that internal computations are done in double precision.
Parameters: EPS is the relative precision, PIM4 = 1/π1/4.

INTEGER(I4B) :: its,j,m,n
INTEGER(I4B), PARAMETER :: MAXIT=10
REAL(SP) :: anu
REAL(SP), PARAMETER :: C1=9.084064e-01_sp,C2=5.214976e-02_sp,&

C3=2.579930e-03_sp,C4=3.986126e-03_sp
REAL(SP), DIMENSION((size(x)+1)/2) :: rhs,r2,r3,theta
REAL(DP), DIMENSION((size(x)+1)/2) :: p1,p2,p3,pp,z,z1
LOGICAL(LGT), DIMENSION((size(x)+1)/2) :: unfinished
n=assert_eq(size(x),size(w),’gauher’)
m=(n+1)/2 The roots are symmetric about the origin, so we have to

find only half of them.anu=2.0_sp*n+1.0_sp
rhs=arth(3,4,m)*PI/anu
r3=rhs**(1.0_sp/3.0_sp)
r2=r3**2
theta=r3*(C1+r2*(C2+r2*(C3+r2*C4)))
z=sqrt(anu)*cos(theta) Initial approximations to the roots.
unfinished=.true.
do its=1,MAXIT Newton’s method carried out simultaneously on the roots.

where (unfinished)
p1=PIM4
p2=0.0

end where
do j=1,n Loop up the recurrence relation to get the Hermite poly-

nomials evaluated at z.where (unfinished)
p3=p2
p2=p1
p1=z*sqrt(2.0_dp/j)*p2-sqrt(real(j-1,dp)/real(j,dp))*p3

end where
end do
p1 now contains the desired Hermite polynomials. We next compute pp, the derivatives,
by the relation (4.5.21) using p2, the polynomials of one lower order.

where (unfinished)
pp=sqrt(2.0_dp*n)*p2
z1=z
z=z1-p1/pp Newton’s formula.
unfinished=(abs(z-z1) > EPS)

end where
if (.not. any(unfinished)) exit

end do
if (its == MAXIT+1) call nrerror(’too many iterations in gauher’)
x(1:m)=z Store the root
x(n:n-m+1:-1)=-z and its symmetric counterpart.
w(1:m)=2.0_dp/pp**2 Compute the weight
w(n:n-m+1:-1)=w(1:m) and its symmetric counterpart.
END SUBROUTINE gauher

Once again we need an explicit approximation for the polynomial roots,
this time forHn(x). We can use the same approximation scheme as
for Lα

n(x), since

H2m(x) ∝ L−1/2
m (x2), H2m+1(x) ∝ xL1/2

m (x2) (B4.4)
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Equations (B4.1) and (B4.2) become

2θ − sin 2θ =
4k − 1

2n + 1
π

xk =
√

2n + 1 cos θ
(B4.5)

Herek = 1, 2, . . . , m wherem = [(n + 1)/2], andk = 1 is the largest root. The
negative roots follow from symmetry. The root atx = 0 for odd n is included
in this approximation.

SUBROUTINE gaujac(x,w,alf,bet)
USE nrtype; USE nrutil, ONLY : arth,assert_eq,nrerror
USE nr, ONLY : gammln
IMPLICIT NONE
REAL(SP), INTENT(IN) :: alf,bet
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w
REAL(DP), PARAMETER :: EPS=3.0e-14_dp

Given alf and bet, the parameters α and β of the Jacobi polynomials, this routine returns
arrays x and w of length N containing the abscissas and weights of the N -point Gauss-
Jacobi quadrature formula. The abscissas are returned in descending order. The parameter
EPS is the relative precision. Note that internal computations are done in double precision.

INTEGER(I4B) :: its,j,n
INTEGER(I4B), PARAMETER :: MAXIT=10
REAL(DP) :: alfbet,a,c,temp
REAL(DP), DIMENSION(size(x)) :: b,p1,p2,p3,pp,z,z1
LOGICAL(LGT), DIMENSION(size(x)) :: unfinished
n=assert_eq(size(x),size(w),’gaujac’)
alfbet=alf+bet Initial approximations to the roots go into z.
z=cos(PI*(arth(1,1,n)-0.25_dp+0.5_dp*alf)/(n+0.5_dp*(alfbet+1.0_dp)))
unfinished=.true.
do its=1,MAXIT Newton’s method carried out simultaneously on the roots.

temp=2.0_dp+alfbet
where (unfinished) Start the recurrence with P0 and P1 to avoid a division

by zero when α + β = 0 or −1.p1=(alf-bet+temp*z)/2.0_dp
p2=1.0

end where
do j=2,n Loop up the recurrence relation to get the Jacobi poly-

nomials evaluated at z.a=2*j*(j+alfbet)*temp
temp=temp+2.0_dp
c=2.0_dp*(j-1.0_dp+alf)*(j-1.0_dp+bet)*temp
where (unfinished)

p3=p2
p2=p1
b=(temp-1.0_dp)*(alf*alf-bet*bet+temp*&

(temp-2.0_dp)*z)
p1=(b*p2-c*p3)/a

end where
end do
p1 now contains the desired Jacobi polynomials. We next compute pp, the derivatives,
by a standard relation involving also p2, the polynomials of one lower order.

where (unfinished)
pp=(n*(alf-bet-temp*z)*p1+2.0_dp*(n+alf)*&

(n+bet)*p2)/(temp*(1.0_dp-z*z))
z1=z
z=z1-p1/pp Newton’s formula.
unfinished=(abs(z-z1) > EPS)

end where
if (.not. any(unfinished)) exit

end do
if (its == MAXIT+1) call nrerror(’too many iterations in gaujac’)
x=z Store the root and the weight.
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w=exp(gammln(alf+n)+gammln(bet+n)-gammln(n+1.0_sp)-&
gammln(n+alf+bet+1.0_sp))*temp*2.0_sp**alfbet/(pp*p2)

END SUBROUTINE gaujac

Now we need an explicit approximation for the roots of the Jacobi poly-
nomialsP (α,β)

n (x). We start with the asymptotic expansion (10.14.10)
of [1]. Setting this to zero gives the formula

x = cos

[
k − 1/4 + α/2

n + (α + β + 1)/2
π

]
(B4.6)

This is better than the formula (22.16.1) in[2], especially at small and moderaten.

� � �

SUBROUTINE gaucof(a,b,amu0,x,w)
USE nrtype; USE nrutil, ONLY : assert_eq,unit_matrix
USE nr, ONLY : eigsrt,tqli
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(INOUT) :: a,b
REAL(SP), INTENT(IN) :: amu0
REAL(SP), DIMENSION(:), INTENT(OUT) :: x,w

Computes the abscissas and weights for a Gaussian quadrature formula from the Jacobi
matrix. On input, a and b of length N are the coefficients of the recurrence relation for the

set of monic orthogonal polynomials. The quantity µ0 ≡
∫ b
a W (x) dx is input as amu0. The

abscissas are returned in descending order in array x of length N , with the corresponding
weights in w, also of length N . The arrays a and b are modified. Execution can be speeded
up by modifying tqli and eigsrt to compute only the first component of each eigenvector.

REAL(SP), DIMENSION(size(a),size(a)) :: z
INTEGER(I4B) :: n
n=assert_eq(size(a),size(b),size(x),size(w),’gaucof’)
b(2:n)=sqrt(b(2:n)) Set up superdiagonal of Jacobi matrix.
call unit_matrix(z) Set up identity matrix for tqli to compute eigenvectors.
call tqli(a,b,z)
call eigsrt(a,z) Sort eigenvalues into descending order.
x=a
w=amu0*z(1,:)**2 Equation (4.5.12).
END SUBROUTINE gaucof

� � �

SUBROUTINE orthog(anu,alpha,beta,a,b)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: anu,alpha,beta
REAL(SP), DIMENSION(:), INTENT(OUT) :: a,b

Computes the coefficients aj and bj , j = 0, . . .N−1, of the recurrence relation for monic or-
thogonal polynomials with weight function W (x) by Wheeler’s algorithm. On input, alpha
and beta contain the 2N − 1 coefficients αj and βj , j = 0, . . . 2N − 2, of the recurrence
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relation for the chosen basis of orthogonal polynomials. The 2N modified moments νj are
input in anu for j = 0, . . .2N − 1. The first N coefficients are returned in a and b.

INTEGER(I4B) :: k,n,ndum
REAL(SP), DIMENSION(2*size(a)+1,2*size(a)+1) :: sig
n=assert_eq(size(a),size(b),’orthog: n’)
ndum=assert_eq(2*n,size(alpha)+1,size(anu),size(beta)+1,’orthog: ndum’)
sig(1,3:2*n)=0.0 Initialization, Equation (4.5.33).
sig(2,2:2*n+1)=anu(1:2*n)
a(1)=alpha(1)+anu(2)/anu(1)
b(1)=0.0
do k=3,n+1 Equation (4.5.34).

sig(k,k:2*n-k+3)=sig(k-1,k+1:2*n-k+4)+(alpha(k-1:2*n-k+2) &
-a(k-2))*sig(k-1,k:2*n-k+3)-b(k-2)*sig(k-2,k:2*n-k+3) &
+beta(k-1:2*n-k+2)*sig(k-1,k-1:2*n-k+2)

a(k-1)=alpha(k-1)+sig(k,k+1)/sig(k,k)-sig(k-1,k)/sig(k-1,k-1)
b(k-1)=sig(k,k)/sig(k-1,k-1)

end do
END SUBROUTINE orthog

� � �

f90
As discussed in Volume 1, multidimensionalquadrature can be performed
by calling a one-dimensional quadrature routine along each dimension.
If the same routine is used for all such calls, then the calls are re-

cursive. The filequad3d.f90 contains two modules,quad3d qgaus mod and
quad3d qromb mod. In the first, the basic one-dimensional quadrature routine is a
10-pointGaussian quadrature routine calledqgausand three-dimensional quadrature
is performed by callingquad3d qgaus. In the second, the basic one-dimensional
routine isqromb of §4.3 and the three-dimensional routine isquad3d qromb. The
Gaussian quadrature is simpler but its accuracy is not controllable. The Romberg
integration lets you specify an accuracy, but is apt to be very slow if you try for too
much accuracy. The only difference between the stand-alone version oftrapzd and
the version included here is that we have to add the keywordRECURSIVE. The only
changes from the stand-alone version ofqromb are: We have to addRECURSIVE; we
removetrapzd from the list of routines inUSE nr; we increaseEPS to 3 × 10−6.
Even this value could be too ambitious for difficult functions. You may want to
set JMAX to a smaller value than 20 to avoid burning up a lot of computer time.
Some people advocate using a smallerEPS on the inner quadrature (overz in our
routine) than on the outer quadratures (overx or y). That strategy would require
separate copies ofqromb.

MODULE quad3d_qgaus_mod
USE nrtype
PRIVATE Hide all names from the outside,
PUBLIC quad3d_qgaus except quad3d itself.
REAL(SP) :: xsav,ysav
INTERFACE User-supplied functions.

FUNCTION func(x,y,z) The three-dimensional function to be integrated.
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP), DIMENSION(:), INTENT(IN) :: z
REAL(SP), DIMENSION(size(z)) :: func
END FUNCTION func

FUNCTION y1(x)
USE nrtype
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REAL(SP), INTENT(IN) :: x
REAL(SP) :: y1
END FUNCTION y1

FUNCTION y2(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: y2
END FUNCTION y2

FUNCTION z1(x,y)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: z1
END FUNCTION z1

FUNCTION z2(x,y)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: z2
END FUNCTION z2

END INTERFACE
The routine quad3d qgaus returns as ss the integral of a user-supplied function func
over a three-dimensional region specified by the limits x1, x2, and by the user-supplied
functions y1, y2, z1, and z2, as defined in (4.6.2). Integration is performed by calling
qgaus recursively.

CONTAINS

FUNCTION h(x) This is H of eq. (4.6.5).
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: h
INTEGER(I4B) :: i
do i=1,size(x)

xsav=x(i)
h(i)=qgaus(g,y1(xsav),y2(xsav))

end do
END FUNCTION h

FUNCTION g(y) This is G of eq. (4.6.4).
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(size(y)) :: g
INTEGER(I4B) :: j
do j=1,size(y)

ysav=y(j)
g(j)=qgaus(f,z1(xsav,ysav),z2(xsav,ysav))

end do
END FUNCTION g

FUNCTION f(z) The integrand f(x, y, z) evaluated at fixed x and y.
REAL(SP), DIMENSION(:), INTENT(IN) :: z
REAL(SP), DIMENSION(size(z)) :: f
f=func(xsav,ysav,z)
END FUNCTION f

RECURSIVE FUNCTION qgaus(func,a,b)
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qgaus
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
REAL(SP) :: xm,xr
REAL(SP), DIMENSION(5) :: dx, w = (/ 0.2955242247_sp,0.2692667193_sp,&

0.2190863625_sp,0.1494513491_sp,0.0666713443_sp /),&
x = (/ 0.1488743389_sp,0.4333953941_sp,0.6794095682_sp,&
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0.8650633666_sp,0.9739065285_sp /)
xm=0.5_sp*(b+a)
xr=0.5_sp*(b-a)
dx(:)=xr*x(:)
qgaus=xr*sum(w(:)*(func(xm+dx)+func(xm-dx)))
END FUNCTION qgaus

SUBROUTINE quad3d_qgaus(x1,x2,ss)
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), INTENT(OUT) :: ss
ss=qgaus(h,x1,x2)
END SUBROUTINE quad3d_qgaus
END MODULE quad3d_qgaus_mod

f90
PRIVATE...PUBLIC quad3d qgaus By default, all module entities are ac-
cessible by a routine that uses the module (unless we restrict theUSE

statement withONLY). In this module, the user needs access only to the
routinequad3d qgaus; the variablesxsav, ysav and the proceduresf, g, h, and
qgaus are purely internal. It is good programming practice to prevent duplicate name
conflicts or data overwriting by limiting access to only the desired entities. Here the
PRIVATE statement with no variable names resets the default fromPUBLIC. Then we
include in thePUBLIC statement only the function name we want to be accessible.

REAL(SP) :: xsav,ysav In Fortran 90, we generally avoid declaring global
variables inCOMMON blocks. Instead, we give them complete specifications in a
module. A deficiency of Fortran 90 is that it does not allow pointers to functions. So
here we have to use the fixed-name functionfunc for the function to be integrated
over. If we could have a pointer to a function as a global variable, then we would
just set the pointer to point to the user function (of any name) in the calling program.
Similarly the functionsy1, y2, z1, andz2 could also have any name.

CONTAINS Here follow the internal subprogramsf, g, h, qgaus, and
quad3d qgaus. Note that such internal subprograms are all “visible” to each other,
i.e., their interfaces are mutually explicit, and do not requireINTERFACE statements.

RECURSIVE SUBROUTINE qgaus(func,a,b,ss) The RECURSIVE keyword is re-
quired for the compiler to process correctly any procedure that is invoked again
in its body before the return from the first call has been completed. While some
compilers may let you get away without explicitly informing them that a routine
is recursive, don’t count on it!

MODULE quad3d_qromb_mod
Alternative to quad3d qgaus mod that uses qromb to perform each one-dimensional in-
tegration.

USE nrtype
PRIVATE
PUBLIC quad3d_qromb
REAL(SP) :: xsav,ysav
INTERFACE

FUNCTION func(x,y,z)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP), DIMENSION(:), INTENT(IN) :: z
REAL(SP), DIMENSION(size(z)) :: func
END FUNCTION func

FUNCTION y1(x)
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USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: y1
END FUNCTION y1

FUNCTION y2(x)
USE nrtype
REAL(SP), INTENT(IN) :: x
REAL(SP) :: y2
END FUNCTION y2

FUNCTION z1(x,y)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: z1
END FUNCTION z1

FUNCTION z2(x,y)
USE nrtype
REAL(SP), INTENT(IN) :: x,y
REAL(SP) :: z2
END FUNCTION z2

END INTERFACE
CONTAINS

FUNCTION h(x)
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: h
INTEGER(I4B) :: i
do i=1,size(x)

xsav=x(i)
h(i)=qromb(g,y1(xsav),y2(xsav))

end do
END FUNCTION h

FUNCTION g(y)
REAL(SP), DIMENSION(:), INTENT(IN) :: y
REAL(SP), DIMENSION(size(y)) :: g
INTEGER(I4B) :: j
do j=1,size(y)

ysav=y(j)
g(j)=qromb(f,z1(xsav,ysav),z2(xsav,ysav))

end do
END FUNCTION g

FUNCTION f(z)
REAL(SP), DIMENSION(:), INTENT(IN) :: z
REAL(SP), DIMENSION(size(z)) :: f
f=func(xsav,ysav,z)
END FUNCTION f

RECURSIVE FUNCTION qromb(func,a,b)
USE nrtype; USE nrutil, ONLY : nrerror
USE nr, ONLY : polint
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP) :: qromb
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: JMAX=20,JMAXP=JMAX+1,K=5,KM=K-1
REAL(SP), PARAMETER :: EPS=3.0e-6_sp
REAL(SP), DIMENSION(JMAXP) :: h,s
REAL(SP) :: dqromb
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INTEGER(I4B) :: j
h(1)=1.0
do j=1,JMAX

call trapzd(func,a,b,s(j),j)
if (j >= K) then

call polint(h(j-KM:j),s(j-KM:j),0.0_sp,qromb,dqromb)
if (abs(dqromb) <= EPS*abs(qromb)) RETURN

end if
s(j+1)=s(j)
h(j+1)=0.25_sp*h(j)

end do
call nrerror(’qromb: too many steps’)
END FUNCTION qromb

RECURSIVE SUBROUTINE trapzd(func,a,b,s,n)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), INTENT(INOUT) :: s
INTEGER(I4B), INTENT(IN) :: n
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
REAL(SP) :: del,fsum
INTEGER(I4B) :: it
if (n == 1) then

s=0.5_sp*(b-a)*sum(func( (/ a,b /) ))
else

it=2**(n-2)
del=(b-a)/it
fsum=sum(func(arth(a+0.5_sp*del,del,it)))
s=0.5_sp*(s+del*fsum)

end if
END SUBROUTINE trapzd

SUBROUTINE quad3d_qromb(x1,x2,ss)
REAL(SP), INTENT(IN) :: x1,x2
REAL(SP), INTENT(OUT) :: ss
ss=qromb(h,x1,x2)
END SUBROUTINE quad3d_qromb
END MODULE quad3d_qromb_mod

MODULE quad3d qromb_mod The only difference between this module and the
previous one is that all calls toqgaus are replaced by calls toqromb and that the
routineqgaus is replaced byqromb andtrapzd.
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