
S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter B5. Evaluation of Functions

SUBROUTINE eulsum(sum,term,jterm)
USE nrtype; USE nrutil, ONLY : poly_term,reallocate
IMPLICIT NONE
REAL(SP), INTENT(INOUT) :: sum
REAL(SP), INTENT(IN) :: term
INTEGER(I4B), INTENT(IN) :: jterm

Incorporates into sum the jterm’th term, with value term, of an alternating series. sum
is input as the previous partial sum, and is output as the new partial sum. The first call
to this routine, with the first term in the series, should be with jterm=1. On the second
call, term should be set to the second term of the series, with sign opposite to that of the
first call, and jterm should be 2. And so on.

REAL(SP), DIMENSION(:), POINTER, SAVE :: wksp
INTEGER(I4B), SAVE :: nterm Number of saved differences in wksp.
LOGICAL(LGT), SAVE :: init=.true.
if (init) then Initialize.

init=.false.
nullify(wksp)

end if
if (jterm == 1) then

nterm=1
wksp=>reallocate(wksp,100)
wksp(1)=term
sum=0.5_sp*term Return first estimate.

else
if (nterm+1 > size(wksp)) wksp=>reallocate(wksp,2*size(wksp))
wksp(2:nterm+1)=0.5_sp*wksp(1:nterm) Update saved quantities by van Wijn-

gaarden’s algorithm.wksp(1)=term
wksp(1:nterm+1)=poly_term(wksp(1:nterm+1),0.5_sp)
if (abs(wksp(nterm+1)) <= abs(wksp(nterm))) then Favorable to increase p,

sum=sum+0.5_sp*wksp(nterm+1)
nterm=nterm+1 and the table becomes longer.

else Favorable to increase n,
sum=sum+wksp(nterm+1) the table doesn’t become longer.

end if
end if
END SUBROUTINE eulsum

f90
This routine uses the function reallocate in nrutil to define a
temporary workspace and then, if necessary, enlarge the workspace
without destroying the earlier contents. The pointer wksp is declared

with the SAVE attribute. Since Fortran 90 pointers are born “in limbo,” we
cannot immediately test whether they are associated or not. Hence the code
if (init)...nullify(wksp). Then the line wksp=>reallocate(wksp,100) allocates an
array of length 100 and points wksp to it. On subsequent calls to eulsum, if nterm
ever gets bigger than the size of wksp, the call to reallocate doubles the size of
wksp and copies the old contents into the new storage.

You could achieve the same effect as the code if (init)...nullify(wksp)...

wksp=>reallocate(wksp,100) with a simple allocate(wksp,100). You would then use

1070

Chapter B5. Evaluation of Functions 1071

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

reallocate only for increasing the storage if necessary. Don’t! The advantage
of the above scheme becomes clear if you consider what happens if eulsum is
invoked twice by the calling program to evaluate two different sums. On the second
invocation, when jterm = 1 again, you would be allocating an already allocated
pointer. This does not generate an error — it simply leaves the original target
inaccessible. Using reallocate instead not only allocates a new array of length
100, but also detects that wksp had already been associated. It dutifully (and
wastefully) copies the first 100 elements of the old wksp into the new storage, and,
more importantly, deallocates the old wksp, reclaiming its storage. While only two
invocations of eulsum without intervening deallocation of memory would not cause
a problem, many such invocations might well. We believe that, as a general rule,
the potential for catastrophe from reckless use of allocate is great enough that you
should always deallocate whenever storage is no longer required.

The unnecessary copying of 100 elements when eulsum is invoked a second
time could be avoided by making init an argument. It hardly seems worth it to us.

For Fortran 90 neophytes, note that unlike in C you have to do nothing special to
get the contents of the storage a pointer is addressing. The compiler figures out from
the context whether you mean the contents, such as wksp(1:nterm), or the address,
such as both occurrences of wksp in wksp=>reallocate(wksp,100).

wksp(1:nterm+1)=poly_term(wksp(1:nterm+1),0.5_sp) The poly term func-
tion in nrutil tabulates the partial sums of a polynomial, or, equivalently, performs
the synthetic division of a polynomial by a monomial.

Small-scale parallelism in eulsum is achieved straightforwardly by the
use of vector constructions and poly term (which parallelizes recur-
sively). The routine is not written to take advantage of data parallelism

in the (infrequent) case of wanting to sum many different series simultaneously; nor,
since wksp is a SAVEd variable, can it be used in many simultaneous instances on a
MIMD machine. (You can easily recode these generalizations if you need them.)

� � �

SUBROUTINE ddpoly(c,x,pd)
USE nrtype; USE nrutil, ONLY : arth,cumprod,poly_term
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(:), INTENT(OUT) :: pd

Given the coefficients of a polynomial of degree Nc − 1 as an array c(1:Nc) with c(1)
being the constant term, and given a value x, this routine returns the polynomial evaluated
at x as pd(1) and Nd − 1 derivatives as pd(2:Nd).

INTEGER(I4B) :: i,nc,nd
REAL(SP), DIMENSION(size(pd)) :: fac
REAL(SP), DIMENSION(size(c)) :: d
nc=size(c)
nd=size(pd)
d(nc:1:-1)=poly_term(c(nc:1:-1),x)
do i=2,min(nd,nc)

d(nc:i:-1)=poly_term(d(nc:i:-1),x)
end do
pd=d(1:nd)
fac=cumprod(arth(1.0_sp,1.0_sp,nd)) After the first derivative, factorial constants

come in.pd(3:nd)=fac(2:nd-1)*pd(3:nd)
END SUBROUTINE ddpoly

1072 Chapter B5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
d(nc:1:-1)=poly_term(c(nc:1:-1),x) The poly term function in
nrutil tabulates the partial sums of a polynomial, or, equivalently,
performs synthetic division. See §22.3 for a discussion of why ddpoly

is coded this way.

fac=cumprod(arth(1.0_sp,1.0_sp,nd)) Here the function arth from nrutil

generates the sequence 1, 2, 3. . . . The function cumprod then tabulates the cumu-
lative products, thus making a table of factorials.

Notice that ddpoly doesn’t need an argument to pass Nd, the number of output
terms desired by the user: It gets that information from the length of the array
pd that the user provides for it to fill. It is a minor curiosity that pd, declared as
INTENT(OUT), can thus be used, on the sly, to pass some INTENT(IN) information.
(A Fortran 90 brain teaser could be: A subroutinewith onlyINTENT(OUT) arguments
can be called to print any specified integer. How is this done?)

SUBROUTINE poldiv(u,v,q,r)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: u,v
REAL(SP), DIMENSION(:), INTENT(OUT) :: q,r

Given the N coefficients of a polynomial in u, and the Nv coefficients of another polynomial
in v, divide the polynomial u by the polynomial v (“u”/“v”) giving a quotient polynomial
whose coefficients are returned in q, and a remainder polynomial whose coefficients are
returned in r. The arrays q and r are of length N , but only the first N −Nv + 1 elements
of q and the first Nv − 1 elements of r are used. The remaining elements are returned
as zero.

INTEGER(I4B) :: i,n,nv
n=assert_eq(size(u),size(q),size(r),’poldiv’)
nv=size(v)
r(:)=u(:)
q(:)=0.0
do i=n-nv,0,-1

q(i+1)=r(nv+i)/v(nv)
r(i+1:nv+i-1)=r(i+1:nv+i-1)-q(i+1)*v(1:nv-1)

end do
r(nv:n)=0.0
END SUBROUTINE poldiv

� � �

FUNCTION ratval_s(x,cof,mm,kk)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(DP), INTENT(IN) :: x Note precision! Change to REAL(SP) if desired.
INTEGER(I4B), INTENT(IN) :: mm,kk
REAL(DP), DIMENSION(mm+kk+1), INTENT(IN) :: cof
REAL(DP) :: ratval_s

Given mm, kk, and cof(1:mm+kk+1), evaluate and return the rational function (cof(1)+

cof(2)x+ · · · + cof(mm+1)xmm)/(1 + cof(mm+2)x+ · · · + cof(mm+kk+1)xkk).
ratval_s=poly(x,cof(1:mm+1))/(1.0_dp+x*poly(x,cof(mm+2:mm+kk+1)))
END FUNCTION ratval_s

f90
This simple routine uses the function poly from nrutil to evaluate the
numerator and denominator polynomials. Single- and double-precision
versions, ratval sandratval v, are overloaded onto the nameratval

when the module nr is used.

Chapter B5. Evaluation of Functions 1073

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION ratval_v(x,cof,mm,kk)
USE nrtype; USE nrutil, ONLY : poly
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(IN) :: x
INTEGER(I4B), INTENT(IN) :: mm,kk
REAL(DP), DIMENSION(mm+kk+1), INTENT(IN) :: cof
REAL(DP), DIMENSION(size(x)) :: ratval_v
ratval_v=poly(x,cof(1:mm+1))/(1.0_dp+x*poly(x,cof(mm+2:mm+kk+1)))
END FUNCTION ratval_v

� � �

The routines recur1 and recur2 are new in this volume, and do not have
Fortran 77 counterparts. First- and second-order linear recurrences are implemented
as trivial do-loops on strictly serial machines. On parallel machines, however,
they pose different, and quite interesting, programming challenges. Since many
calculations can be decomposed into recurrences, it is useful to have general,
parallelizable routines available. The algorithms behind recur1 and recur2 are
discussed in §22.2.

RECURSIVE FUNCTION recur1(a,b) RESULT(u)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b
REAL(SP), DIMENSION(size(a)) :: u
INTEGER(I4B), PARAMETER :: NPAR_RECUR1=8

Given vectors a of size n and b of size n − 1, returns a vector u that satisfies the first
order linear recurrence u1 = a1, uj = aj + bj−1uj−1, for j = 2, . . . , n. Parallelization is
via a recursive evaluation.

INTEGER(I4B) :: n,j
n=assert_eq(size(a),size(b)+1,’recur1’)
u(1)=a(1)
if (n < NPAR_RECUR1) then Do short vectors as a loop.

do j=2,n
u(j)=a(j)+b(j-1)*u(j-1)

end do
else

Otherwise, combine coefficients and recurse on the even components, then evaluate all
the odd components in parallel.

u(2:n:2)=recur1(a(2:n:2)+a(1:n-1:2)*b(1:n-1:2), &
b(3:n-1:2)*b(2:n-2:2))

u(3:n:2)=a(3:n:2)+b(2:n-1:2)*u(2:n-1:2)
end if
END FUNCTION recur1

f90
RECURSIVE FUNCTION recur1(a,b) RESULT(u) When a recursive function
invokes itself only indirectly through a sequence of function calls, then
the function name can be used for the result just as in a nonrecursive

function. When the function invokes itself directly, however, as in recur1, then
another name must be used for the result. If you are hazy on the syntax for RESULT,
see the discussion of recursion in §21.5.

� � �

1074 Chapter B5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FUNCTION recur2(a,b,c)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a,b,c
REAL(SP), DIMENSION(size(a)) :: recur2

Given vectors a of size n and b and c of size n−2, returns a vector u that satisfies the second
order linear recurrence u1 = a1, u2 = a2, uj = aj+bj−2uj−1+cj−2uj−2, for j = 3, . . . , n.
Parallelization is via conversion to a first order recurrence for a two-dimensional vector.

INTEGER(I4B) :: n
REAL(SP), DIMENSION(size(a)-1) :: a1,a2,u1,u2
REAL(SP), DIMENSION(size(a)-2) :: b11,b12,b21,b22
n=assert_eq(size(a),size(b)+2,size(c)+2,’recur2’)
a1(1)=a(1) Set up vector a.
a2(1)=a(2)
a1(2:n-1)=0.0
a2(2:n-1)=a(3:n)
b11(1:n-2)=0.0 Set up matrix b.
b12(1:n-2)=1.0
b21(1:n-2)=c(1:n-2)
b22(1:n-2)=b(1:n-2)
call recur1_v(a1,a2,b11,b12,b21,b22,u1,u2)
recur2(1:n-1)=u1(1:n-1)
recur2(n)=u2(n-1)
CONTAINS

RECURSIVE SUBROUTINE recur1_v(a1,a2,b11,b12,b21,b22,u1,u2)
USE nrtype; USE nrutil, ONLY : assert_eq
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: a1,a2,b11,b12,b21,b22
REAL(SP), DIMENSION(:), INTENT(OUT) :: u1,u2
INTEGER(I4B), PARAMETER :: NPAR_RECUR2=8

Used by recur2 to evaluate first order vector recurrence. Routine is a two-dimensional
vector version of recur1, with matrix multiplication replacing scalar multiplication.

INTEGER(I4B) :: n,j,nn,nn1
REAL(SP), DIMENSION(size(a1)/2) :: aa1,aa2
REAL(SP), DIMENSION(size(a1)/2-1) :: bb11,bb12,bb21,bb22
n=assert_eq((/size(a1),size(a2),size(b11)+1,size(b12)+1,size(b21)+1,&

size(b22)+1,size(u1),size(u2)/),’recur1_v’)
u1(1)=a1(1)
u2(1)=a2(1)
if (n < NPAR_RECUR2) then Do short vectors as a loop.

do j=2,n
u1(j)=a1(j)+b11(j-1)*u1(j-1)+b12(j-1)*u2(j-1)
u2(j)=a2(j)+b21(j-1)*u1(j-1)+b22(j-1)*u2(j-1)

end do
else

Otherwise, combine coefficients and recurse on the even components, then evaluate all
the odd components in parallel.

nn=n/2
nn1=nn-1
aa1(1:nn)=a1(2:n:2)+b11(1:n-1:2)*a1(1:n-1:2)+&

b12(1:n-1:2)*a2(1:n-1:2)
aa2(1:nn)=a2(2:n:2)+b21(1:n-1:2)*a1(1:n-1:2)+&

b22(1:n-1:2)*a2(1:n-1:2)
bb11(1:nn1)=b11(3:n-1:2)*b11(2:n-2:2)+&

b12(3:n-1:2)*b21(2:n-2:2)
bb12(1:nn1)=b11(3:n-1:2)*b12(2:n-2:2)+&

b12(3:n-1:2)*b22(2:n-2:2)
bb21(1:nn1)=b21(3:n-1:2)*b11(2:n-2:2)+&

b22(3:n-1:2)*b21(2:n-2:2)
bb22(1:nn1)=b21(3:n-1:2)*b12(2:n-2:2)+&

b22(3:n-1:2)*b22(2:n-2:2)
call recur1_v(aa1,aa2,bb11,bb12,bb21,bb22,u1(2:n:2),u2(2:n:2))
u1(3:n:2)=a1(3:n:2)+b11(2:n-1:2)*u1(2:n-1:2)+&

Chapter B5. Evaluation of Functions 1075

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

b12(2:n-1:2)*u2(2:n-1:2)
u2(3:n:2)=a2(3:n:2)+b21(2:n-1:2)*u1(2:n-1:2)+&

b22(2:n-1:2)*u2(2:n-1:2)
end if
END SUBROUTINE recur1_v
END FUNCTION recur2

� � �

FUNCTION dfridr(func,x,h,err)
USE nrtype; USE nrutil, ONLY : assert,geop,iminloc
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x,h
REAL(SP), INTENT(OUT) :: err
REAL(SP) :: dfridr
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), INTENT(IN) :: x
REAL(SP) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B),PARAMETER :: NTAB=10
REAL(SP), PARAMETER :: CON=1.4_sp,CON2=CON*CON,BIG=huge(x),SAFE=2.0

Returns the derivative of a function func at a point x by Ridders’ method of polynomial
extrapolation. The value h is input as an estimated initial stepsize; it need not be small,
but rather should be an increment in x over which func changes substantially. An estimate
of the error in the derivative is returned as err.
Parameters: Stepsize is decreased by CON at each iteration. Max size of tableau is set by
NTAB. Return when error is SAFE worse than the best so far.

INTEGER(I4B) :: ierrmin,i,j
REAL(SP) :: hh
REAL(SP), DIMENSION(NTAB-1) :: errt,fac
REAL(SP), DIMENSION(NTAB,NTAB) :: a
call assert(h /= 0.0, ’dfridr arg’)
hh=h
a(1,1)=(func(x+hh)-func(x-hh))/(2.0_sp*hh)
err=BIG
fac(1:NTAB-1)=geop(CON2,CON2,NTAB-1)
do i=2,NTAB Successive columns in the Neville tableau will go to smaller

stepsizes and higher orders of extrapolation.hh=hh/CON
a(1,i)=(func(x+hh)-func(x-hh))/(2.0_sp*hh) Try new, smaller stepsize.
do j=2,i

Compute extrapolations of various orders, requiring no new function evaluations.
a(j,i)=(a(j-1,i)*fac(j-1)-a(j-1,i-1))/(fac(j-1)-1.0_sp)

end do
errt(1:i-1)=max(abs(a(2:i,i)-a(1:i-1,i)),abs(a(2:i,i)-a(1:i-1,i-1)))

The error strategy is to compare each new extrapolation to one order lower, both at the
present stepsize and the previous one.

ierrmin=iminloc(errt(1:i-1))
if (errt(ierrmin) <= err) then If error is decreased, save the improved an-

swer.err=errt(ierrmin)
dfridr=a(1+ierrmin,i)

end if
if (abs(a(i,i)-a(i-1,i-1)) >= SAFE*err) RETURN

If higher order is worse by a significant factor SAFE, then quit early.
end do
END FUNCTION dfridr

1076 Chapter B5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

f90
ierrmin=iminloc(errt(1:i-1)) The function iminloc in nrutil is use-
ful when you need to know the index of the smallest element in an
array.

� � �

FUNCTION chebft(a,b,n,func)
USE nrtype; USE nrutil, ONLY : arth,outerprod
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
INTEGER(I4B), INTENT(IN) :: n
REAL(SP), DIMENSION(n) :: chebft
INTERFACE

FUNCTION func(x)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: x
REAL(SP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
Chebyshev fit: Given a function func, lower and upper limits of the interval [a,b], and
a maximum degree n, this routine computes the n coefficients ck such that func(x) ≈
[
∑n

k=1 ckTk−1(y)] − c1/2, where y and x are related by (5.8.10). This routine is to be
used with moderately large n (e.g., 30 or 50), the array of c’s subsequently to be truncated
at the smaller value m such that cm+1 and subsequent elements are negligible.

REAL(DP) :: bma,bpa
REAL(DP), DIMENSION(n) :: theta
bma=0.5_dp*(b-a)
bpa=0.5_dp*(b+a)
theta(:)=PI_D*arth(0.5_dp,1.0_dp,n)/n
chebft(:)=matmul(cos(outerprod(arth(0.0_dp,1.0_dp,n),theta)), &

func(real(cos(theta)*bma+bpa,sp)))*2.0_dp/n
We evaluate the function at the n points required by (5.8.7). We accumulate the sum
in double precision for safety.

END FUNCTION chebft

f90
chebft(:)=matmul(...) Here again Fortran 90 produces a very concise
parallelizable formulation that requires some effort to decode. Equation
(5.8.7) is a product of the matrix of cosines, where the rows are indexed

by j and the columns by k, with the vector of function values indexed by k. We
use the outerprod function in nrutil to form the matrix of arguments for the
cosine, and rely on the element-by-element application of cos to produce the matrix
of cosines. matmul then takes care of the matrix product. A subtlety is that, while
the calculation is being done in double precision to minimize roundoff, the function
is assumed to be supplied in single precision. Thus real(...,sp) is used to convert
the double precision argument to single precision.

FUNCTION chebev_s(a,b,c,x)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b,x
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP) :: chebev_s

Chebyshev evaluation: All arguments are input. c is an array of length M of Chebyshev
coefficients, the first M elements of c output from chebft (which must have been called

Chapter B5. Evaluation of Functions 1077

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

with the same a and b). The Chebyshev polynomial
∑M

k=1 ckTk−1(y) − c1/2 is evaluated
at a point y = [x− (b+ a)/2]/[(b−a)/2], and the result is returned as the function value.

INTEGER(I4B) :: j,m
REAL(SP) :: d,dd,sv,y,y2
if ((x-a)*(x-b) > 0.0) call nrerror(’x not in range in chebev_s’)
m=size(c)
d=0.0
dd=0.0
y=(2.0_sp*x-a-b)/(b-a) Change of variable.
y2=2.0_sp*y
do j=m,2,-1 Clenshaw’s recurrence.

sv=d
d=y2*d-dd+c(j)
dd=sv

end do
chebev_s=y*d-dd+0.5_sp*c(1) Last step is different.
END FUNCTION chebev_s

FUNCTION chebev_v(a,b,c,x)
USE nrtype; USE nrutil, ONLY : nrerror
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: c,x
REAL(SP), DIMENSION(size(x)) :: chebev_v
INTEGER(I4B) :: j,m
REAL(SP), DIMENSION(size(x)) :: d,dd,sv,y,y2
if (any((x-a)*(x-b) > 0.0)) call nrerror(’x not in range in chebev_v’)
m=size(c)
d=0.0
dd=0.0
y=(2.0_sp*x-a-b)/(b-a)
y2=2.0_sp*y
do j=m,2,-1

sv=d
d=y2*d-dd+c(j)
dd=sv

end do
chebev_v=y*d-dd+0.5_sp*c(1)
END FUNCTION chebev_v

f90
The name chebev is overloaded with scalar and vector versions.
chebev v is essentially identical to chebev s except for the decla-
rations of the variables. Fortran 90 does the appropriate scalar or vector

arithmetic in the body of the routine, depending on the type of the variables.

� � �

FUNCTION chder(a,b,c)
USE nrtype; USE nrutil, ONLY : arth,cumsum
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(size(c)) :: chder

This routine returns an array of length N containing the Chebyshev coefficients of the
derivative of the function whose coefficients are in the array c. Input are a,b,c, as output

1078 Chapter B5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

from routine chebft §5.8. The desired degree of approximation N is equal to the length
of c supplied.

INTEGER(I4B) :: n
REAL(SP) :: con
REAL(SP), DIMENSION(size(c)) :: temp
n=size(c)
temp(1)=0.0
temp(2:n)=2.0_sp*arth(n-1,-1,n-1)*c(n:2:-1)
chder(n:1:-2)=cumsum(temp(1:n:2)) Equation (5.9.2).
chder(n-1:1:-2)=cumsum(temp(2:n:2))
con=2.0_sp/(b-a)
chder=chder*con Normalize to the interval b-a.
END FUNCTION chder

FUNCTION chint(a,b,c)
USE nrtype; USE nrutil, ONLY : arth
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(size(c)) :: chint

This routine returns an array of length N containing the Chebyshev coefficients of the
integral of the function whose coefficients are in the array c. Input are a,b,c, as output
from routine chebft §5.8. The desired degree of approximation N is equal to the length
of c supplied. The constant of integration is set so that the integral vanishes at a.

INTEGER(I4B) :: n
REAL(SP) :: con
n=size(c)
con=0.25_sp*(b-a) Factor that normalizes to the interval b-a.
chint(2:n-1)=con*(c(1:n-2)-c(3:n))/arth(1,1,n-2) Equation (5.9.1).
chint(n)=con*c(n-1)/(n-1) Special case of (5.9.1) for n.
chint(1)=2.0_sp*(sum(chint(2:n:2))-sum(chint(3:n:2))) Set the constant of inte-

gration.END FUNCTION chint

f90
If you look at equation (5.9.1) for the Chebyshev coefficients of the
integral of a function, you will see c i−1 and ci+1 and be tempted to use
eoshift. We think it is almost always better to use array sections instead,

as in the code above, especially if your code will ever run on a serial machine.

� � �

FUNCTION chebpc(c)
USE nrtype
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: c
REAL(SP), DIMENSION(size(c)) :: chebpc

Chebyshev polynomial coefficients. Given a coefficient array c of length N , this routine

returns a coefficient array d of length N such that
∑N

k=1 dky
k−1 =

∑N
k=1 ckTk−1(y) −

c1/2. The method is Clenshaw’s recurrence (5.8.11), but now applied algebraically rather
than arithmetically.

INTEGER(I4B) :: j,n
REAL(SP), DIMENSION(size(c)) :: dd,sv
n=size(c)
chebpc=0.0
dd=0.0
chebpc(1)=c(n)
do j=n-1,2,-1

sv(2:n-j+1)=chebpc(2:n-j+1)
chebpc(2:n-j+1)=2.0_sp*chebpc(1:n-j)-dd(2:n-j+1)
dd(2:n-j+1)=sv(2:n-j+1)

Chapter B5. Evaluation of Functions 1079

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

sv(1)=chebpc(1)
chebpc(1)=-dd(1)+c(j)
dd(1)=sv(1)

end do
chebpc(2:n)=chebpc(1:n-1)-dd(2:n)
chebpc(1)=-dd(1)+0.5_sp*c(1)
END FUNCTION chebpc

� � �

SUBROUTINE pcshft(a,b,d)
USE nrtype; USE nrutil, ONLY : geop
IMPLICIT NONE
REAL(SP), INTENT(IN) :: a,b
REAL(SP), DIMENSION(:), INTENT(INOUT) :: d

Polynomial coefficient shift. Given a coefficient array d of length N , this routine generates

a coefficient array g of the same length such that
∑N

k=1 dky
k−1 =

∑N
k=1 gkx

k−1, where
x and y are related by (5.8.10), i.e., the interval −1 < y < 1 is mapped to the interval
a < x < b. The array g is returned in d.

INTEGER(I4B) :: j,n
REAL(SP), DIMENSION(size(d)) :: dd
REAL(SP) :: x
n=size(d)
dd=d*geop(1.0_sp,2.0_sp/(b-a),n)
x=-0.5_sp*(a+b)
d(1)=dd(n)
d(2:n)=0.0
do j=n-1,1,-1 We accomplish the shift by synthetic division, that miracle of

high-school algebra.d(2:n+1-j)=d(2:n+1-j)*x+d(1:n-j)
d(1)=d(1)*x+dd(j)

end do
END SUBROUTINE pcshft

There is a subtle, but major, distinction between the synthetic division
algorithm used in the Fortran 77 version of pcshft and that used above.
In the Fortran 77 version, the synthetic division (translated to Fortran

90 notation) is

d(1:n)=dd(1:n)
do j=1,n-1

do k=n-1,j,-1
d(k)=x*d(k+1)+d(k)

end do
end do

while, in Fortran 90, it is

d(1)=dd(n)
d(2:n)=0.0
do j=n-1,1,-1

d(2:n+1-j)=d(2:n+1-j)*x+d(1:n-j)
d(1)=d(1)*x+dd(j)

end do

As explained in §22.3, these are algebraically — but not algorithmically — equivalent.
The inner loop in the Fortran 77 version does not parallelize, because each k value
uses the result of the previous one. In fact, the k loop is a synthetic division, which
can be parallelized recursively (as in the nrutil routine poly term), but not simply

1080 Chapter B5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

vectorized. In the Fortran 90 version, since not one but n-1 successive synthetic
divisions are to be performed (by the outer loop), it is possible to reorganize the
calculation to allow vectorization.

� � �

FUNCTION pccheb(d)
USE nrtype; USE nrutil, ONLY : arth,cumprod,geop
IMPLICIT NONE
REAL(SP), DIMENSION(:), INTENT(IN) :: d
REAL(SP), DIMENSION(size(d)) :: pccheb

Inverse of routine chebpc: given an array of polynomial coefficients d, returns an equivalent
array of Chebyshev coefficients of the same length.

INTEGER(I4B) :: k,n
REAL(SP), DIMENSION(size(d)) :: denom,numer,pow
n=size(d)
pccheb(1)=2.0_sp*d(1)
pow=geop(1.0_sp,2.0_sp,n) Powers of 2.
numer(1)=1.0 Combinatorial coefficients computed as numer/denom.
denom(1)=1.0
denom(2:(n+3)/2)=cumprod(arth(1.0_sp,1.0_sp,(n+1)/2))
pccheb(2:n)=0.0
do k=2,n Loop over orders of x in the polynomial.

numer(2:(k+3)/2)=cumprod(arth(k-1.0_sp,-1.0_sp,(k+1)/2))
pccheb(k:1:-2)=pccheb(k:1:-2)+&

d(k)/pow(k-1)*numer(1:(k+1)/2)/denom(1:(k+1)/2)
end do
END FUNCTION pccheb

� � �

SUBROUTINE pade(cof,resid)
USE nrtype
USE nr, ONLY : lubksb,ludcmp,mprove
IMPLICIT NONE
REAL(DP), DIMENSION(:), INTENT(INOUT) :: cof DP for consistency with ratval.
REAL(SP), INTENT(OUT) :: resid

Given cof(1:2N + 1), the leading terms in the power series expansion of a function, solve
the linear Padé equations to return the coefficients of a diagonal rational function approxi-
mation to the same function, namely (cof(1)+ cof(2)x + · · · + cof(N + 1)xN)/(1 +
cof(N + 2)x + · · · + cof(2N + 1)xN). The value resid is the norm of the residual
vector; a small value indicates a well-converged solution.

INTEGER(I4B) :: k,n
INTEGER(I4B), DIMENSION((size(cof)-1)/2) :: indx
REAL(SP), PARAMETER :: BIG=1.0e30_sp A big number.
REAL(SP) :: d,rr,rrold
REAL(SP), DIMENSION((size(cof)-1)/2) :: x,y,z
REAL(SP), DIMENSION((size(cof)-1)/2,(size(cof)-1)/2) :: q,qlu
n=(size(cof)-1)/2
x=cof(n+2:2*n+1) Set up matrix for solving.
y=x
do k=1,n

q(:,k)=cof(n+2-k:2*n+1-k)
end do
qlu=q
call ludcmp(qlu,indx,d) Solve by LU decomposition and backsubsti-

tution.call lubksb(qlu,indx,x)
rr=BIG
do Important to use iterative improvement, since

the Padé equations tend to be ill-conditioned.rrold=rr

Chapter B5. Evaluation of Functions 1081

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

z=x
call mprove(q,qlu,indx,y,x)
rr=sum((z-x)**2) Calculate residual.
if (rr >= rrold) exit If it is no longer improving, call it quits.

end do
resid=sqrt(rrold)
do k=1,n Calculate the remaining coefficients.

y(k)=cof(k+1)-dot_product(z(1:k),cof(k:1:-1))
end do
cof(2:n+1)=y Copy answers to output.
cof(n+2:2*n+1)=-z
END SUBROUTINE pade

� � �

SUBROUTINE ratlsq(func,a,b,mm,kk,cof,dev)
USE nrtype; USE nrutil, ONLY : arth,geop
USE nr, ONLY : ratval,svbksb,svdcmp
IMPLICIT NONE
REAL(DP), INTENT(IN) :: a,b
INTEGER(I4B), INTENT(IN) :: mm,kk
REAL(DP), DIMENSION(:), INTENT(OUT) :: cof
REAL(DP), INTENT(OUT) :: dev
INTERFACE

FUNCTION func(x)
USE nrtype
REAL(DP), DIMENSION(:), INTENT(IN) :: x
REAL(DP), DIMENSION(size(x)) :: func
END FUNCTION func

END INTERFACE
INTEGER(I4B), PARAMETER :: NPFAC=8,MAXIT=5
REAL(DP), PARAMETER :: BIG=1.0e30_dp

Returns in cof(1:mm+kk+1) the coefficients of a rational function approximation to the
function func in the interval (a,b). Input quantities mm and kk specify the order of the
numerator and denominator, respectively. The maximum absolute deviation of the approx-
imation (insofar as is known) is returned as dev. Note that double-precision versions of
svdcmp and svbksb are called.

INTEGER(I4B) :: it,ncof,npt,npth
REAL(DP) :: devmax,e,theta
REAL(DP), DIMENSION((mm+kk+1)*NPFAC) :: bb,ee,fs,wt,xs
REAL(DP), DIMENSION(mm+kk+1) :: coff,w
REAL(DP), DIMENSION(mm+kk+1,mm+kk+1) :: v
REAL(DP), DIMENSION((mm+kk+1)*NPFAC,mm+kk+1) :: u,temp
ncof=mm+kk+1
npt=NPFAC*ncof Number of points where function is evaluated,

i.e., fineness of the mesh.npth=npt/2
dev=BIG
theta=PIO2_D/(npt-1)
xs(1:npth-1)=a+(b-a)*sin(theta*arth(0,1,npth-1))**2

Now fill arrays with mesh abscissas and function values. At each end, use formula that mini-
mizes roundoff sensitivity in xs.

xs(npth:npt)=b-(b-a)*sin(theta*arth(npt-npth,-1,npt-npth+1))**2
fs=func(xs)
wt=1.0 In later iterations we will adjust these weights to

combat the largest deviations.ee=1.0
e=0.0
do it=1,MAXIT Loop over iterations.

bb=wt*(fs+sign(e,ee))
Key idea here: Fit to fn(x) + e where the deviation is positive, to fn(x) − e where it is
negative. Then e is supposed to become an approximation to the equal-ripple deviation.

temp=geop(spread(1.0_dp,1,npt),xs,ncof)

1082 Chapter B5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 F

O
R

T
R

A
N

 90: T
he A

rt of P
A

R
A

LLE
L S

cientific C
om

puting (IS
B

N
 0-521-57439-0)

C
opyright (C

) 1986-1996 by C
am

bridge U
niversity P

ress.P
rogram

s C
opyright (C

) 1986-1996 by N
um

erical R
ecipes S

oftw
are.

P
erm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. F
urther reproduction, or any copying of m

achine-
readable files (including this one) to any server

com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Note that vector form of geop (returning matrix) is being used.
u(:,1:mm+1)=temp(:,1:mm+1)*spread(wt,2,mm+1)

Set up the “design matrix” for the least squares fit.
u(:,mm+2:ncof)=-temp(:,2:ncof-mm)*spread(bb,2,ncof-mm-1)
call svdcmp(u,w,v)

Singular Value Decomposition. In especially singular or difficult cases, one might here
edit the singular values w(1:ncof), replacing small values by zero.

call svbksb(u,w,v,bb,coff)
ee=ratval(xs,coff,mm,kk)-fs Tabulate the deviations and revise the weights.
wt=abs(ee) Use weighting to emphasize most deviant points.
devmax=maxval(wt)
e=sum(wt)/npt Update e to be the mean absolute deviation.
if (devmax <= dev) then Save only the best coefficient set found.

cof=coff
dev=devmax

end if
write(*,10) it,devmax

end do
10 format (’ ratlsq iteration=’,i2,’ max error=’,1p,e10.3)

END SUBROUTINE ratlsq

f90
temp=geop(spread(1.0_dp,1,npt),xs,ncof) The design matrix uij is de-
fined for i = 1, . . . , npts by

uij =

{
wix

j−1
i , j = 1, . . . , m+ 1

−bix
j−m−2
i , j = m+ 2, . . . , n

(B5.12)

The first case in equation (B5.12) is computed in parallel by constructing the matrix
temp equal to




1 x1 x2
1 · · ·

1 x2 x2
2 · · ·

1 x3 x2
3 · · ·

...
...

...
. . .




and then multiplying by the matrix spread(wt,2,mm+1), which is just



w1 w1 w1 · · ·
w2 w2 w2 · · ·
w3 w3 w3 · · ·
...

...
...

. . .




(Remember that multiplication using * means element-by-element multiplication,
not matrix multiplication.) A similar construction is used for the second part of
the design matrix.

